PROCESS AND TECHNICAL
DEBT

Christian Kaestner
Required Reading:

e Sculley, David, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary,
Michael Young, Jean-Francois Crespo, and Dan Dennison. "Hidden technical debt in machine learning
systems." In Advances in neural information processing systems, pp. 2503-2511. 2015.

Suggested Readings:

e Fowler and Highsmith. The Agile Manifesto

e Steve McConnell. Software project survival guide. Chapter 3

e Pfleeger and Atlee. Software Engineering: Theory and Practice. Chapter 2

e Kruchten, Philippe, Robert L. Nord, and Ipek Ozkaya. "Technical debt: From metaphor to theory and
practice." IEEE Software 29, no. 6 (2012): 18-21.

e Patel, Kayur, James Fogarty, James A. Landay, and Beverly Harrison. "Investigating statistical machine
learning as a tool for software development." In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 667-676. 2008.


http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://agilemanifesto.org/
https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_58818.pdf
http://www.kayur.org/papers/chi2008.pdf




LEARNING GOALS

Contrast development processes of software engineers and data scientists
Outline process conflicts between different roles and suggest ways to
mitigate them

Recognize the importance of process

Describe common agile practices and their goals

Understand and correctly use the metaphor of technical debt

Describe how ML can incur reckless and inadvertent technical debt, outline
common sources of technical debt



CASE STUDY: REAL-ESTATE WEBSITE
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ML COMPONENT: PREDICTING REAL ESTATE VALUE

Given a large database of house sales and statistical/demographic data from
public records, predict the sales price of a house.

f(size, rooms, tax, neighborhood, . ..) — price

aZi"OW / Edit Q Save &> Share

3bd 1ba 2,090 Square Feet
541 S Graham St, Pittsburgh, PA 15232
Off market = Zestimate®: $384,287 Rent Zestimate®: $2,195/mo

Est. refi payment: $2,102/mo e Get current rates




DATA SCIENCE: ITERATION
AND EXPLORATION



DATA SCIENCE IS ITERATIVE AND EXPLORATORY
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(Source: Guo. "Data Science Workflow: Overview and Challenges." Blog@CACM,

Oct 2013)


https://cacm.acm.org/blogs/blog-cacm/169199-data-science-workflow-overview-and-challenges/fulltext

DATA SCIENCE IS ITERATIVE AND EXPLORATORY

Data Science Lifecycle
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(Microsoft Azure Team, "What is the Team Data Science Process?" Microsoft
Documentation, Jan 2020)


https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/media/overview/tdsp-lifecycle2.png
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview

DATA SCIENCE IS ITERATIVE AND EXPLORATORY
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Source: Patel, Kayur, James Fogarty, James A. Landay, and Beverly Harrison.

"Investigating statistical machine learning as a tool for software development." In
Proc. CHI, 2008.


http://localhost:1948/accuracy-improvements.png
http://www.kayur.org/papers/chi2008.pdf

Speaker notes

This figure shows the result from a controlled experiment in which participants had 2 sessions of 2h each to build a
model. Whenever the participants evaluated a model in the process, the accuracy is recorded. These plots show the
accuracy improvements over time, showing how data scientists make incremental improvements through frequent
iteration.



DATA SCIENCE IS ITERATIVE AND EXPLORATORY

e Science mindset: start with rough goal, no clear specification, unclear
whether possible

e Heuristics and experience to guide the process

e Try and error, refine iteratively, hypothesis testing

Go back to data collection and cleaning if needed, revise goals



SHARE EXPERIENCE?




COMPUTATIONAL NOTEBOOKS

Origins in "literal programming",
interleaving text and code, treating
programs as literature (Knuth'84)
First notebook in Wolfram
Mathematica 1.0 in 1988
Document with text and code cells,
showing execution results under
cells

Code of cells is executed, per cell,
in a kernel

Many notebook implementations
and supported languages, Python
+ Jupyter currently most popular

° # load data collected from teaml
import pandas as pd

url = 'http://128.2.25.78:8080/private/logl.clean’
df = pd.read _csv(url)

df.head()

o) dayIdx user userAvgTime location dow isWeekend time
0 0 Pittsburgh66Correy 7.045001 Pittsburgh 6 True 0.000000
1 1 Pittsburgh66Correy 7.045001 Pittsburgh 7 True 6.883333
2 2 Pittsburgh66Correy 7.045001 Pittsburgh 1 False 6.816667
3 3 Pittsburgh66Correy 7.045001 Pittsburgh 2 False 7.383333
4 4 Pittsburgh66Correy 7.045001  Pittsburgh 8 False 0.000000

Data was preprocessed externally, identifying the time at a given day when the light was first turned or}
12pm). Weather and sunrise information is not included here, though that'd be important. If the light w
this morning (quite common), 0 is recorded.

[ ] # just data encoding and splitting X and Y

X = df.drop(['time'], axis=1)
YnonZero = df['time'] > 0
Y = df['time"']

from sklearn import preprocessing

# leDate = preprocessing.LabelEncoder()
# leDate.fit(X['date'])

# leDate.transform(X['date'])

X=X.apply(preprocessing.LabelEncoder().fit_transform)
X




Speaker notes

« See also https://en.wikipedia.org/wiki/Literate_programming
« Demo with public notebook, e.g., https://colab.research.google.com/notebooks/mlcc/intro_to pandas.ipynb


https://en.wikipedia.org/wiki/Literate_programming
https://colab.research.google.com/notebooks/mlcc/intro_to_pandas.ipynb

NOTEBOOKS SUPPORT ITERATION AND
EXPLORATION

Quick feedback, similar to REPL

Visual feedback including figures and tables
Incremental computation: reexecuting individual cells

e Quick and easy: copy paste, no abstraction needed

e Easy to share: documentincludes text, code, and results



BRIEF DISCUSSION: NOTEBOOK LIMITATIONS AND
DRAWBACKS?




SOFTWARE ENGINEERING
PROCESS



INNOVATIVE VS ROUTINE PROJECTS

e Like data science tasks, most software projects are innovative
= Google, Amazon, Ebay, Netflix
= Vehicles and robotics
= [ anguage processing, Graphics, Al
e Routine (now, not 20 years ago)
= E-commerce websites?
= Product recommendation? Voice recognition?
= Routine gets automated -> innovation cycle



A SIMPLE PROCESS

1. Discuss the software that needs to be written
2. Write some code

3. Test the code to identify the defects

4. Debug to find causes of defects

5. Fix the defects

6. If not done, return to step 1



SOFTWARE PROCESS

“The set of activities and associated results that produce a
software product”

Examples?







Speaker notes

Writing down all requirements Require approval for all changes to requirements Use version control for all changes
Track all reported bugs Review requirements and code Break down development into smaller tasks and schedule and
monitor them Planning and conducting quality assurance Have daily status meetings Use Docker containers to push
code between developers and operation
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Speaker notes

Visualization following McConnell, Steve. Software project survival guide. Pearson Education, 1998.
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Speaker notes

Idea: spent most of the time on coding, accept a little rework
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Speaker notes

negative view of process. pure overhead, reduces productive work, limits creativity
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Speaker notes

Real experience if little attention is payed to process: increasingly complicated, increasing rework; attempts to rescue by
introducing process



EXAMPLE OF PROCESS PROBLEMS?
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Speaker notes
Collect examples of what could go wrong:

Change Control: Mid-project informal agreement to changes suggested by customer or manager. Project scope expands
25-50% Quality Assurance: Late detection of requirements and design issues. Test-debug-reimplement cycle limits
development of new features. Release with known defects. Defect Tracking: Bug reports collected informally, forgotten
System Integration: Integration of independently developed components at the very end of the project. Interfaces out of
sync. Source Code Control: Accidentally overwritten changes, lost work. Scheduling: When project is behind,
developers are asked weekly for new estimates.



TYPICAL PROCESS STEPS (NOT NECESSARILY IN
THIS ORDER)

e Understand customers, identify what to build, by when, budget
Identify relevant qualities, plan/design system accordingly
Test, deploy, maintain, evolve

e Plan, staff, workaround
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SURVIVAL MODE

e Missed deadlines -> "solo development mode" to meet own deadlines
* |gnore integration work
e Stop interacting with testers, technical writers, managers, ...



Hypothesis: Process increases flexibility and efficiency + Upfront investment for
later greater returns
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Speaker notes

ideal setting of little process investment upfront
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Speaker notes

Empirically well established rule: Bugs are increasingly expensive to fix the larger the distance between the phase
where they are created vs where they are corrected.
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Speaker notes

Complicated processes like these are often what people associate with “process". Software process is needed, but does
not need to be complicated.



SOFTWARE PROCESS
MODELS



AD-HOC PROCESSES

1. Discuss the software that needs to be written
2. Write some code

3. Test the code to identify the defects

4. Debug to find causes of defects

5. Fix the defects

6. If not done, return to step 1



WATERFALL MODEL

‘ Implementation |

Verification }_‘;
‘ Maintenance \

taming the chaos, understand requirements, plan before coding, remember testing

(CC-BY-SA-2.5)


https://commons.wikimedia.org/wiki/File:Waterfall_model.png

Speaker notes

Although dated, the key idea is still essential -- think and plan before implementing. Not all requirements and design can
be made upfront, but planning is usually helpful.



RISK FIRST: SPIRAL MODEL

A Cumulative cost

1.Determine Progress 2. Identify and
objectives /—ﬂ resolve risks

Review

Requirements Operational
plan Prototype 1\ Prototype 2\ prototype

Concept of Concept of R
operation | requirements Detailed
Requirements

Development | Verification
plan | & Validation

Test plan | Verification
& Validation

Implementation

4. Plan the Release
next iteration 3. Development
and Test

incremental prototypes, starting with most risky components






CONSTANT ITERATION: AGILE

24 h
30 days
: )
P27
Product Backlog Sprint Backlog Sprint Working increment

of the software

working with customers, constant replanning

(CC BY-SA 4.0, Lakeworks)







CONTRASTING PROCESS MODELS

Ad-hoc -- Waterfall -- Spiral -- Agile
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DATA SCIENCE VS
SOFTWARE ENGINEERING



DISCUSSION: ITERATION IN NOTEBOOK VS AGILE?
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http://localhost:1948/accuracy-improvements.png




Speaker notes

There is similarity in that there is an iterative process, but the idea is different and the process model seems mostly
orthogonal to iteration in data science. The spiral model prioritizes risk, especially when it is not clear whether a model is
feasible. One can do similar things in model development, seeing whether it is feasible with data at hand at all and build
an early prototype, but it is not clear that an initial okay model can be improved incrementally into a great one later. Agile
can work with vague and changing requirements, but that again seems to be a rather orthogonal concern. Requirements
on the product are not so much unclear or changing (the goal is often clear), but it's not clear whether and how a model
can solve it.



POOR SOFTWARE ENGINEERING PRACTICES IN
NOTEBOOKS?

o # load data collected from teaml
import pandas as pd

url = 'http://128.2.25.78:8080/private/logl.clean’
df = pd.read_csv(url)

df.head()

o) dayIdx user userAvgTime 1location dow isWeekend time
0 0 Pittsburgh66Correy 7.045001 Pittsburgh 6 True 0.000000
1 1 Pittsburgh66Correy 7.045001 Pittsburgh 7 True 6.883333
2 2 Pittsburgh66Correy 7.045001  Pittsburgh 1 False 6.816667
3 3 Pittsburgh66Correy 7.045001  Pittsburgh 2 False 7.383333
4 4 Pittsburgh66Correy 7.045001 Pittsburgh 3 False 0.000000

Data was preprocessed externally, identifying the time at a given day when the light was first turned or}
12pm). Weather and sunrise information is not included here, though that'd be important. If the light w
this morning (quite common), 0 is recorded.

[ ] # just data encoding and splitting X and Y

X = df.drop(['time'], axis=1)
YnonZero = df['time'] > 0
Y = df['time']

from sklearn import preprocessing

# leDate = preprocessing.LabelEncoder()
# leDate.fit(X['date'])

# leDate.transform(X['date'])

X=X.apply(preprocessing.LabelEncoder().fit_transform)
X

Little abstraction

Global state

No testing

Heavy copy and paste

Little documentation

Poor version control

Out of order execution

Poor development features (vs IDE)



UNDERSTANDING DATA SCIENTIST WORKFLOWS

e |nstead of blindly recommended "SE Best Practices" understand context
 Documentation and testing not a priority in exploratory phase
e Help with transitioning into practice

= From notebooks to pipelines

= Support maintenance and iteration once deployed

= Provide infrastructure and tools



Data Software
Scientists = Engineers



PROCESS FOR AI-ENABLED SYSTEMS

Integrate Software Engineering and Data Science processes

Establish system-level requirements (e.g., user needs, safety, fairness)
Inform data science modeling with system requirements (e.g., privacy,
fairness)

Try risky parts first (most likely include ML components; ~spiral)
Incrementally develop prototypes, incorporate user feedback (~agile)
Provide flexibility to iterate and improve

Design system with characteristics of Al component (e.g., Ul design,
safeguards)

Plan for testing throughout the process and in production

Manage project understanding both software engineering and data science
workflows

No existing "best practices" or workflow models
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TECHNICAL DEBT

TECH DEBT
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https://www.monkeyuser.com/2018/tech-debt/

TECHNICAL DEBT METAPHOR

e Analogy to financial debt
= Have a benefit now (e.g., progress quickly, release now)
= accepting later cost (loss of productivity, e.g., higher
maintenance/operating cost, rework)
= debt accumulates and can suffocate project
e |deally a deliberate decision (short term tactical or long term strategic)
e |deally track debt and plan for paying it down

Examples?



Reckless Prudent
“We don’t have time “We must ship now
for design” and deal with
consequences”
Deliberate
Inadvertent
] , . “Now we know how we
‘What's Layering: should have done it”

Source: Martin Fowler 2009,
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html


https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

TECHNICAL DEBT FROM ML COMPONENTS?

(see reading)

Sculley, David, et al. Hidden technical debt in machine learning systems. Advances in Neural Information
Processing Systems. 2015.


http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

THE NOTEBOOK

Jupyter Notebooks are a gift from God to those who work
with data. They allow us to do quick experiments with
Julia, Python, R, and more -- John Paul Ada

° # load data collected from teaml
import pandas as pd

url = 'http://128.2.25.78:8080/private/logl.clean’
df = pd.read_csv(url)

df.head()

() dayIdx user userAvgTime location dow isWeekend time
0 0 Pittsburgh66Correy 7.045001  Pittsburgh 6 True 0.000000
1 1 Pittsburgh66Correy 7.045001  Pittsburgh 7 True 6.883333
2 2 Pittsburgh66Correy 7.045001  Pittsburgh 1 False 6.816667
3 3  Pittsburgh66Correy 7.045001  Pittsburgh 2 False 7.383333
4 4 Pittsburgh66Correy 7.045001  Pittsburgh 3 False 0.000000

Data was preprocessed externally, identifying the time at a given day when the light was first turned on
12pm). Weather and sunrise information is not included here, though that'd be important. If the light w.
this morning (quite common), 0 is recorded.

[ 1 # just data encoding and splitting X and Y

X = df.drop(['time'], axis=1)
YnonZero = df['time'] > 0
Y = df['time']

from sklearn import preprocessing

# leDate = preprocessing.LabelEncoder ()
# leDate.fit(X['date'])

# leDate.transform(X['date'])

X=X.apply(preprocessing.LabelEncoder().fit transform)
X



https://towardsdatascience.com/no-hassle-machine-learning-experiments-with-azure-notebooks-e1a22e8782c3

Speaker notes

Discuss benefits and drawbacks of Jupyter style notebooks



ML AND TECHNICAL DEBT

e Often reckless and inadvertent in inexperienced teams

e ML can seem like an easy addition, but it may cause long-term costs

e Needs to be maintained, evolved, and debugged

e Goals may change, environment may change, some changes are subtle

e Example problems
= Systems and models are tangled and changing one has cascading
effects on the other
= Untested, brittle infrastructure; manual deployment
= Unstable data dependencies, replication crisis
= Data drift and feedback loops
= Magic constants and dead experimental code paths

Further reading: Sculley, David, et al. Hidden technical debt in machine learning systems. Advances in Neural
Information Processing Systems. 2015.


http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

CONTROLLING TECHNICAL DEBT FROM ML
COMPONENTS




CONTROLLING TECHNICAL DEBT FROM ML
COMPONENTS

Avoid Al when not needed

Understand and document requirements, design for mistakes

Build reliable and maintainable pipelines, infrastructure, good engineering
practices

Test infrastructure, system testing, testing and monitoring in production
Test and monitor data quality

Understand and model data dependencies, feedback loops, ...

Document design intent and system architecture

Strong interdisciplinary teams with joint responsibilities

Document and track technical debt



SUMMARY

Data scientists and software engineers follow different processes

ML projects need to consider process needs of both

lteration and upfront planning are both important, process models codify
good practices

Deliberate technical debt can be good, too much debt can suffocate a
project

Easy to amount (reckless) debt with machine learning

4



