SECURITY

Eunsuk Kang

Required reading: Building Intelligent Systems: A Guide to Machine Learning Engineering, G. Hulten (2018), Chapter
25: Adversaries and Abuse. The Top 10 Risks of Machine Learning Security, G. McGraw et al., IEEE Computer (2020).



LEARNING GOALS

Explain key concerns in security (in general and with regard to ML models)
Analyze a system with regard to attacker goals, attack surface, attacker
capabilities

Describe common attacks against ML models, including poisoning and
evasion attacks

Understand design opportunities to address security threats at the system
level

Identify security requirements with threat modeling

Apply key design principles for secure system design
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ELEMENTS OF SECURITY

Security requirements (policies)
= What does it mean for my system to be secure?
Threat model
= What are the attacker's goal, capability, and incentive?
Attack surface
= Which parts of the system are exposed to the attacker?
Protection mechanisms
= How do we prevent the attacker from compromising a security
requirement?



SECURITY REQUIREMENTS

INFORMATION
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INTEGRITY CONFIDENTIALITY

"CIA triad" of information security

Confidentiality: Sensitive data must be accessed by authorized users only

Integrity: Sensitive data must be modifiable by authorized users only
Availability: Critical services must be available when needed by clients



EXAMPLE: COLLEGE ADMISSION SYSTEM

FEATURE

Hacker helps applicants breach security at top
business schools

Among the institutions affected were Harvard, Duke and Stanford

Using the screen name "brookbond,” the hacker broke into the online
application and decision system of ApplyYourself Inc. and posted a

procedure students could use to access information about their

applications before acceptance notices went out.
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CONFIDENTIALITY, INTEGRITY, OR AVAILABILITY?

e Applications to the program can only be viewed by staff and faculty in the
department.

e The application site should be able to handle requests on the day of the
application deadline.

e Application decisions are recorded only by the faculty and staff.

e The acceptance notices can only be sent out by the program director.



OTHER SECURITY REQUIREMENTS

e Authentication (no spoofing): Users are who they say they are

e Non-repudiation: Every change can be traced to who was responsible for it

e Authorization (no escalation of privilege): Only users with the right
permissions can access a resource/perform an action



THREAT MODELING
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WHAT IS THREAT MODELING?

e Threat model: A profile of an attacker
= Goal: What is the attacker trying to achieve?
= Capability:
o Knowledge: What does the attacker know?
o Actions: What can the attacker do?
o Resources: How much effort can it spend?
= Incentive: Why does the attacker want to do this?

“If you know the enemy and know yourself, you
need not fear the result of a hundred battles.”
- Sun Tzu, The Art of War
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ATTACKER GOAL

e What is the attacker trying to achieve?
= Undermine one or more security requirements
e Example: College admission
= Access other applicants info without being authorized
= Modify application status to “accepted”
= Cause website shutdown to sabotage other applicants



ATTACKER CAPABILITY
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e What are the attacker’s actions?
= Depends on system boundary & its exposed interfaces
= Use an architecture diagram to identify attack surface & actions



ATTACKER CAPABILITY
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e What are the attacker’s actions?

= Depends on system boundary & its exposed interfaces

= Use an architecture diagram to identify attack surface & actions
e Example: College admission



ATTACKER CAPABILITY
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e What are the attacker’s actions?

= Depends on system boundary & its exposed interfaces

= Use an architecture diagram to identify attack surface & actions
e Example: College admission

= Physical: Break into building & access server



ATTACKER CAPABILITY
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= Depends on system boundary & its exposed interfaces
= Use an architecture diagram to identify attack surface & actions

e Example: College admission

= Physical: Break into building & access server
= Cyber: Send malicious HTTP requests for SQL injection, DoS attack



ATTACKER CAPABILITY
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e \What are the attacker’s actions?

= Depends on system boundary & its exposed interfaces
= Use an architecture diagram to identify attack surface & actions

e Example: College admission

= Physical: Break into building & access server
= Cyber: Send malicious HTTP requests for SQL injection, DoS attack

= Social: Send phishing e-mail, bribe an insider for access



STRIDE THREAT MODELING

' Threat Property Violated  Threat Definition
Spoofing identify Authentication Pretending to be something or someone other than yourself
Tampernng with data Integnity Modrifying something on disk, network, memory, or elsewhere
R Repudiation Non-repudiation Claiming that you didn't do something or were not responsible;

can be honest or false

Information disclosure | Confidentiality Prowviding information to someone not authonzed to access it
D Denial of service Availabilrty Exhausting resources needed to provide service
Elevation of privilege Authonzation Allowing someone to do something they are not authonzed to do

e Asystematic approach to identifying threats & attacker actions

= For each component, enumerate & identify potential threats

= e.g., Admission Server & DoS: Applicant may flood it with requests
e Tool available (Microsoft Threat Modeling Tool)
e Limitations:

= May end up with a long list of threats, not all of them relevant

= False sense of security: STRIDE does not imply completeness!



OPEN WEB APPLICATION SECURITY PROJECT

OWASP Top 10 Application Security Risks - 2017

" ™y
A1:2017-Injection

Injection flaws, such as SOL, NoSQL, OS, and LDAP injection, occur when untrusted data is sent to an interpreter as part of a command or query. The
attacker's hostile data can trick the interpreter into executing unintended commands or accessing data without proper authorization.
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A2:2017-Broken Authentication

Application functions related to authentication and session management are often implemented incorrectly, allowing attackers to compromise passwords,
keys, or session tokens, or to exploil other implementation flaws 1o assume other users' identities temporarily or permanently.
L =y
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A3:2017-Sensitive Data Exposure

Many web applications and APls do not properly protect sensitive data, such as financial, healthcare, and Pll. Attackers may steal or modify such weakly
protecled data to conduct credit card frawd, identity theft, or other crimes. Sensitive data may be compromised without extra protection, such as encrypltion
at rest or in transit, and requires special precautions when exchanged with the browser.
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A4:2017-XML External Entitigs (XXE)
Many odder or poorly configured XML processors evaluale external entity references within XML documents. External entities can be used o disclose

internal files using the file URI handler, internal file shares, internal port scanning, remote code execution, and denial of service attacks.
“ S

~ ™
A5:2017-Broken Access Control
Restrictions on what authenticated users are allowed 1o do are often not proparly enforced. Attackers can exploil these flaws 10 access unauthorized
functionality andior data, such as access other users’ accounts, view sensitive files, modify other users' data, change access rights, efc.
- oy

r ™
AB:2017-Security Misconfiguration
Security misconfiguration is the most commonly seen issue. This is commonly a result of insecure default configurations, incomplete or ad hoc
configurations, open cloud stura?e. misconfigured HTTP headers, and verbose error messages containing sensitive information. Mot only must all
operating systems, frameworks, libraries, and applications be securely configured, but they must be patched/upgraded in a timety fashion.

e OWASP: Community-driven source of knowledge & tools for web security



THREAT MODELING FOR ML
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ML ATTACKER GOAL

e Confidentiality attacks: Exposure of sensitive data
= |nfer a sensitive label for a data point (e.g., hospital record)
* |ntegrity attacks: Unauthorized modification of data
= |[nduce a model to misclassify data points from one class to another
= e.g., Spam filter: Classify a spam as a non-spam
e Availability attacks: Disruption to critical services
= Reduce the accuracy of a model
= |[nduce a model to misclassify many data points



ATTACKER CAPABILITY
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e Knowledge: Does the attacker have access to the model?
= Training data? Learning algorithm used? Parameters?
e Attacker actions:
= Training time: Poisoning attacks
= |nference time: Evasion attacks, model inversion attacks

Understanding Machine Learning, Bhogavalli (2019)
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POISONING ATTACKS: AVAILABILITY
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e Availability: Inject mislabeled training data to damage model quality
= 3% poisoning => 11% decrease in accuracy (Steinhardt, 2017)
e Attacker must have some access to the training set
= e.g., models trained on public data set (e.g., ImageNet)
e Example: Anti-virus (AV) scanner
= Online platform for submission of potentially malicious code
= Some AV company (allegedly) poisoned competitor's model



POISONING ATTACKS: INTEGRITY
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* |nsert training data with seemingly correct labels
e More targeted than availability attacks

= Cause misclassification from one specific class to another

Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks, Shafahi et al. (2018)



EXAMPLE: HOME ASSISTANT ROBOT

e Dialogue system to interact with family members
e Use perception & speech to identify the person
e Log & upload interactions; re-train & update models for all robots



EXAMPLE: HOME ASSISTANT ROBOT
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e What are the security requirements?

e What are possible poisoning attacks?
e What does the attacker need to know/access?



DEFENSE AGAINST POISONING ATTACKS

Before attack

After attack

After sanitization

°J..°é

e 0 1]
“o ‘."tﬂ"&

(discarded
as outliers)




Stronger Data Poisoning Attacks Break Data Sanitization Defenses, Koh, Steinhardt, and Liang (2018).



DEFENSE AGAINST POISONING ATTACKS

Before attack After attack After sanitization

(discarded
as outliers)

e Anomaly detection & data sanitization
= |dentify and remove outliers in training set (see data quality lecture)
= |dentify and understand drift from telemetry



https://ckaestne.github.io/seai/F2020/slides/11_dataquality/dataquality.html#/3

Stronger Data Poisoning Attacks Break Data Sanitization Defenses, Koh, Steinhardt, and Liang (2018).



DEFENSE AGAINST POISONING ATTACKS

Before attack After attack After sanitization

(discarded
as outliers)

-

e Anomaly detection & data sanitization
= |dentify and remove outliers in training set (see data quality lecture)
= |dentify and understand drift from telemetry
e Quality control over your training data
= Who can modify or add to my training set? Do | trust the data source?
= Use security mechanisms (e.g., authentication) and logging to track
data provenance


https://ckaestne.github.io/seai/F2020/slides/11_dataquality/dataquality.html#/3

Stronger Data Poisoning Attacks Break Data Sanitization Defenses, Koh, Steinhardt, and Liang (2018).



EVASION ATTACKS (ADVERSARIAL EXAMPLES)

e Add noise to an existing sample & cause misclassification
e Attack at inference time
= Typically assumes knowledge of the model (algorithm, parameters)
= Recently, shown to be possible even when the attacker only has
access to model output ("blackbox" attack)

Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition, Sharif et al. (2016).







EVASION ATTACKS: ANOTHER EXAMPLE

1 !

Clean Stop Sign

l] “Stop sign”

Real-world Stop Sign
in Berkeley

“Stop sign”

Adversarial Example

“Speed limit sign 45km/h”

Adversarial Example

“Speed limit sign 45km/h”

Robust Physical-World Attacks on Deep Learning Visual Classification, Eykholt et al., in CVPR (2018).
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TASK DECISION BOUNDARY VS MODEL BOUNDARY

e Decision boundary: Ground truth; often unknown and not specifiable
e Model boundary: What the model learns; an approximation of decision
boundary

From Goodfellow et al (2018). Making machine learning robust against adversarial
inputs. Communications of the ACM, 61(7), 56-66.


http://localhost:1948/decisionboundary.png
https://par.nsf.gov/servlets/purl/10111674

EXAMPLE: HOME ASSISTANT ROBOT

e What are possible evasion attacks? Possible consequences?
e What does the attacker need to know/access?



DEFENSE AGAINST EVASION ATTACKS

(a) Visual Image

SRR 5

(c) Original Codeword (e) Codeword Attacked

(b) Infrared Image of (d) Infrared Image of
Smart Code Smart Code Attacked

Reliable Smart Road Signs, Sayin et al. (2019).
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e Adversarial training
= Generate/find a set of adversarial examples
= Re-train your model with correct labels

Reliable Smart Road Signs, Sayin et al. (2019).
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DEFENSE AGAINST EVASION ATTACKS

SRR 5

(c) Original Codeword (e) Codeword Attacked

(a) Visual Image (b) Infrared Image of (d) Infrared Image of
Smart Code Smart Code Attacked

e Adversarial training
= Generate/find a set of adversarial examples
= Re-train your model with correct labels
* Input sanitization
= "Clean" & remove noise from input samples
= e.g., Color depth reduction, spatial smoothing, JPEG compression

Reliable Smart Road Signs, Sayin et al. (2019).
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DEFENSE AGAINST EVASION ATTACKS

SRR 5

(c) Original Codeword (e) Codeword Attacked

(a) Visual Image (b) Infrared Image of (d) Infrared Image of
Smart Code Smart Code Attacked

e Adversarial training

= Generate/find a set of adversarial examples

= Re-train your model with correct labels
e Input sanitization

= "Clean" & remove noise from input samples

= e.g., Color depth reduction, spatial smoothing, JPEG compression
e Redundancy: Design multiple mechanisms to detect an attack

= Stop sign: Insert a barcode as a checksum; harder to bypass

Reliable Smart Road Signs, Sayin et al. (2019).
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GENERATING ADVERSARIAL EXAMPLES

See counterfactual explanations
Find similar input with different prediction

= targeted (specific prediction) vs untargeted (any wrong prediction)
Many similarity measures (e.g., change one feature vs small changes to
many features)

» x* = x+argmin{| €] :f(x + €) # f(x)}
Attacks more effective with access to model internals, but also black-box
attacks (with many queries to the model) feasible

= With model internals: follow the model's gradient

= Without model internals: learn surrogate model

= With access to confidence scores: heuristic search (e.g., hill climbing)


https://ckaestne.github.io/seai/F2020/slides/17_explainability/explainability.html#/7/1
https://ckaestne.github.io/seai/F2020/slides/17_explainability/explainability.html#/6/2

MODEL INVERSION: CONFIDENTIALITY

Recovered Image Training Image

e Given a model output (e.g., name of a person), infer the corresponding,
potentially sensitive input (facial image of the person)
e One method: Gradient descent on input space
= Assumes that the model produces a confidence score for prediction
= Start with a random input vector & iterate towards input values with
higher confidence level



Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures, M. Fredrikson et al. in CCS
(2015).



DEFENSE AGAINST MODEL INVERSION ATTACKS
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More noise (smaller £€) = more privacy =

e Limit attacker access to confidence scores
= e.g., reduce the precision of the scores by rounding them off
= But also reduces the utility of legitimate use of these scores!
e Differential privacy in ML
= Limit what attacker can learn about the model (e.g., parameters)
based on an individual training sample
= Achieved by adding noise to input or output (e.g., DP-SGD)
= More noise => higher privacy, but also lower model accuracy!




Biscotti: A Ledger for Private and Secure Peer-to-Peer Machine Learning, M. Shayan et al., arXiv:1811.09904 (2018).



STATE OF ML SECURITY
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STATE OF ML SECURITY

1. Analyze classifier 4. Develop countermeasure

L (e.g., add features, retraining)

2. Devise attack . 3. Analyze attack

e On-going arms race (mostly among researchers)
= Defenses proposed & quickly broken by noble attacks
e Assume ML component is likely vulnerable
= Design your system to minimize impact of an attack
e Remember: There may be easier ways to compromise system
= e.g., poor security misconfiguration (default password), lack of
encryption, code vulnerabilities, etc.,

Classifier designer

.17



DESIGNING FOR SECURITY



SECURITY MINDSET

EMERGENCY TELEPHONE

e Assume that all components may be compromised at one point or another

e Don't assume users will behave as expected; assume all inputs to the
system as potentially malicious

e Aim for risk minimization, not perfect security; reduce the chance of
catastrophic failures from attacks



SECURE DESIGN PRINCIPLES

e Principle of least privilege
= A component should be given the minimal privileges needed to fulfill
its functionality
e |solation/compartmentalization
= Components should be able to interact with each other no more than
necessary
= Components should treat inputs from each other as potentially
malicious
e Goal: Minimize the impact of a compromised component on the rest of the
system
= |n poor system designs, vulnerability in one component => entire
system compromised!



MONOLITHIC DESIGN
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MONOLITHIC DESIGN
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Flaw in any part of the system => Security impact on the entire system!




COMPARTMENTALIZED DESIGN
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COMPARTMENTALIZED DESIGN
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Flaw in one component => Limited impact on the rest of the system!




EXAMPLE: VEHICLE SECURITY

Callular rotwork * Sustooth APP

Breakout box

FMIAMXM ¢ - WFI TSR

08B0 M Thox
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e Research project@UCSD: Remotely taking over vehicle control

= Create MP3 with malicious code & burn onto CD

= Play CD => send malicious commands to brakes, engine, locks...
e Problem: Over-privilege & lack of isolation!

= |n traditional vehicles, components share a common CAN bus

= Anyone can broadcast & read messages

Comprehensive Experimental Analyses of Automotive Attack Surfaces, Checkoway et al., in USENIX Security (2011).
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EXAMPLE: MAIL CLIENT

e Requirements
= Receive & send email over external network
= Place incoming email into local user inbox files
e Sendmail
= Monolithic design; entire program runs as UNIX root
= Historical source of many vulnerabilities
e Qmail: “Security-aware” mail agent
= Compartmentalized design
= |solation based on OS process isolation
o Separate modules run as separate “users” (UID)
o Mutually distrusting processes
= [east privilege
o Minimal privileges for each UID; access to specific resources
(files, network sockets, ...)
o Only one “root” user (with all privileges)



QMAIL ARCHITECTURE

gmaild

user
gmail-smtpd gmailg

gmails

gmailr

root

gmail-rspawn gmail-lspawn

setuid user

gmaj user
gmail-remote gmail-local




QMAIL ARCHITECTURE

gmail

user
gmail-smtpd qmailq
7

Receives incoming external emails

Even if compromised, limited power
(vs. sendmail: runs as root)

gmailr gmails

root

gmail-rspawn gmail-Ispawn

setuid user

gmaj user
gmail-remote gmail-local




QMAIL ARCHITECTURE

gmaild .

B - use
Gmail-smtpD gmailqg <qmai|-‘|nj@
quall_queue >/

—

l

e -

AEH'SEHK
gmaily ——7= "> qmails . root
gmail-rspawn gmail-lspawn
== ""--\_____ __'__,—'-"’/)

l setuid/ user
gmail— — —__ user
qmail—remotD Qmail—local)

< 500 LOC
(vs. “67K LOC in sendmail)

B

—

e Component running as root much smaller than in sendmail; much easier to
test & verify that it's free of vulnerabilities
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SECURE DESIGN PRINCIPLES FOR ML

e Principle of least privilege
= Who has access to training data, model internal, system input &
output, etc.,?
= Does any user/stakeholder have more access than necessary?
o |If so, limit access by using authentication mechanisms

2. dataset
Sesembly 3. datasets

training

validation

-I . raw data
in the 4. learning 5. evaluation
world algorithm

| 6. inputs mj

8. inference
algorithm

9. outputs
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e Principle of least privilege
= Who has access to training data, model internal, system input &
output, etc.,?
= Does any user/stakeholder have more access than necessary?
o |If so, limit access by using authentication mechanisms



SECURE DESIGN PRINCIPLES FOR ML

e Principle of least privilege
= Who has access to training data, model internal, system input &
output, etc.,?
= Does any user/stakeholder have more access than necessary?
o |f so, limit access by using authentication mechanisms
e |solation & compartmentalization
= Can a security attack on one ML component (e.g., misclassification)
adversely affect other parts of the system?
o |f so, compartmentalize or build in mechanisms to limit impact
(see risk mitigation strategies)


https://ckaestne.github.io/seai/F2020/slides/09_risks_ii/risks_ii.html#/3

SECURE DESIGN PRINCIPLES FOR ML

e Principle of least privilege
= Who has access to training data, model internal, system input &
output, etc.,?
= Does any user/stakeholder have more access than necessary?
o |If so, limit access by using authentication mechanisms
e |solation & compartmentalization
= Can a security attack on one ML component (e.g., misclassification)
adversely affect other parts of the system?
o |f so, compartmentalize or build in mechanisms to limit impact
(see risk mitigation strategies)
e Monitoring & detection:
= ook for odd shifts in the dataset and clean the data if needed (for
poisoning attacks)
= Assume all system input as potentially malicious & sanitize (evasion
attacks)


https://ckaestne.github.io/seai/F2020/slides/09_risks_ii/risks_ii.html#/3

Al FOR SECURITY



builtin

30 COMPANIES
MERGING Al AND
CYBERSECURITY TO
KEEP US SAFE AND
SOUND

Alyssa Schroer
July 12, 2019 Updated: July 15, 2020

n y the year 2021, cybercrime losses will



https://builtin.com/artificial-intelligence/artificial-intelligence-cybersecurity

MANY DEFENSE SYSTEMS USE MACHINE LEARNING

e Classifiers to learn malicious content
= Spam filters, virus detection
e Anomaly detection
= |dentify unusual/suspicious activity, eg. credit card fraud, intrusion
detection
= Often unsupervised learning, e.g. clustering
Game theory
= Model attacker costs and reactions, design countermeasures
Automate incidence response and mitigation activities
= |ntegrated with DevOps
Network analysis
= |dentify bad actors and their communication in public/intelligence
data
e Many more, huge commercial interest

Recommended reading: Chandola, Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly detection: A survey." ACM
computing surveys (CSUR) 41, no. 3 (2009): 1-58.


http://cucis.ece.northwestern.edu/projects/DMS/publications/AnomalyDetection.pdf

Al SECURITY SOLUTIONS ARE AI-ENABLED
SYSTEMS TOO

e AlI/ML component one part of a larger system

e Consider entire system, from training to telemetry, to user interface, to
pipeline automation, to monitoring

e Al-based security solutions can be attacked themselves






Speaker notes

One contributing factor to the Equifax attack was an expired certificate for an intrusion detection system



SUMMARY

Security requirements: Confidentiality, integrity, availability
Threat modeling to identify security requirements & attacker capabilities
ML-specific attacks on training data, telemetry, or the model

= Poisoning attack on training data to influence predictions

= Evasion attacks to shape input data to achieve intended predictions

(adversarial learning)

= Model inversion attacks for privacy violations
Security design at the system level

= Principle of least privilege

= |solation & compartmentalization
Al can be used for defense (e.g. anomaly detection)
Key takeaway: Adopt a security mindset! Assume all components may be
vulnerable in one way or another. Design your system to explicitly reduce
the impact of potential attacks

a /s



