
Machine Learning in ProductionMachine Learning in Production

Toward Architecture andToward Architecture and
DesignDesign

1


After requirements...

3


Learning Goals
Describe the role of architecture and design between requirements
and implementation
Identify the different ML components and organize and prioritize
their quality concerns for a given project
Explain they key ideas behind decision trees and random forests
and analyze consequences for various qualities
Demonstrate an understanding of the key ideas of deep learning
and how it drives qualities
Plan and execute an evaluation of the qualities of alternative AI
components for a given purpose

4


Readings
Required reading: Hulten, Geoff. "Building Intelligent Systems: A
Guide to Machine Learning Engineering." (2018), Chapters 17 and 18

Recommended reading: Siebert, Julien, Lisa Joeckel, Jens Heidrich,
Koji Nakamichi, Kyoko Ohashi, Isao Namba, Rieko Yamamoto, and
Mikio Aoyama. “Towards Guidelines for Assessing Qualities of
Machine Learning Systems.” In International Conference on the
Quality of Information and Communications Technology, pp. 17–31.
Springer, Cham, 2020.

5


Recall: ML is a Component
in a System in an
Environment

7


8


Recall: Systems Thinking

A system is a set of inter-related components that work together in a
particular environment to perform whatever functions are required to
achieve the system's objective -- Donella Meadows

9


Thinking like a Software
Architect

11


So far: Requirements
Identify goals for the system, define success metrics
Understand requirements, specifications, and assumptions
Consider risks, plan for mitigations to mistakes
Approaching component requirements: Understand quality
requirements and constraints for models and learning algorithms

12


From Requirements to Implementations...
We know what to build, but how? How to we meet the quality goals?

Software architecture: Key design decisions, early on, focused on key
qualities

Architectural decisions are hard to change later
13



Software Architecture
The software architecture of a program or computing system is the
structure or structures of the system, which comprise software elements,
the externally visible properties of those elements, and the relationships
among them.
-- Kazman et al. 2012

14


https://www.oreilly.com/library/view/software-architecture-in/9780132942799/?ar

How much Architecture/Design?
Software Engineering Theme: Think before you code

Like requirements: Upfront investment can prevent problems later,
but slower initially

-> Focus on most important qualities early, but leave flexibility

15


Quality Requirements Drive Architecture
Design
Driven by requirements, identify most important qualities

Examples:
Development cost, operational cost, time to release
Scalability, availability, response time, throughput
Security, safety, usability, fairness
Ease of modifications and updates
ML: Accuracy, ability to collect data, training latency

16


Why Architecture? ()
Represents earliest design decisions.

Aids in communication with stakeholders: Shows them “how” at a level they can understand, raising
questions about whether it meets their needs

Defines constraints on implementation: Design decisions form “load-bearing walls” of application

Dictates organizational structure: Teams work on different components

Inhibits or enables quality attributes: Similar to design patterns

Supports predicting cost, quality, and schedule: Typically by predicting information for each
component

Aids in software evolution: Reason about cost, design, and effect of changes

Kazman et al. 2012

17


https://www.oreilly.com/library/view/software-architecture-in/9780132942799/?ar

Case Study: Twitter

18




Source and additional reading: Raffi. Twitter Blog, 2013

Speaker notes

New Tweets per second record, and how!

https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html

Twitter - Caching Architecture

19




Running one of the world’s largest Ruby on Rails installations
200 engineers
Monolithic: managing raw database, memcache, rendering the site, and * presenting the public APIs in one codebase
Increasingly difficult to understand system; organizationally challenging to manage and parallelize engineering teams
Reached the limit of throughput on our storage systems (MySQL); read and write hot spots throughout our databases
Throwing machines at the problem; low throughput per machine (CPU + RAM limit, network not saturated)
Optimization corner: trading off code readability vs performance

Speaker notes

Twitter's Redesign Goals
Performance

Improve median latency; lower outliers
Reduce number of machines 10x

Reliability
Isolate failures

Maintainability
"We wanted cleaner boundaries with “related” logic being in one place":
encapsulation and modularity at the systems level (vs class/package level)

Modifiability
Quicker release of new features: "run small and empowered engineering teams
that could make local decisions and ship user-facing changes, independent of
other teams"

20


Twitter: Redesign Decisions
Ruby on Rails -> JVM/Scala
Monolith -> Microservices
RPC framework with
monitoring, connection
pooling, failover strategies,
loadbalancing, ... built in
New storage solution,
temporal clustering, "roughly
sortable ids"
Data driven decision making

21


Twitter Case Study: Key Insights
Architectural decisions affect entire systems, not only individual
modules

Abstract, different abstractions for different scenarios

Reason about quality attributes early

Make architectural decisions explicit

Question: Did the original architect make poor decisions?

22


Decomposition, Interfaces,
and Responsibility
Assignm.

24


System Decomposition

Identify components and their responsibilities

Establishes interfaces and team boundaries
25



Information Hiding
Decomposition enables scaling teams

Each team works on a component

Need to coordinate on interfaces, but implementations remain hidden

Interface descriptions are crutial
Who is responsible for what
Component requirements (specifications), behavioral and quality
Especially consider nonlocal qualities: e.g., safety, privacy

Interfaces rarely fully specified in practice, source of conflicts
26



Each system is different...

27


Each system is different...

28


Each system is different...

29


Each system is different...

30


System Decomposition
Each system is different, identify important components

Examples:
Personalized music recommendations: microserivce deployment in cloud,
logging of user activitiy, nightly batch processing for inference, regular model
updates, regular experimentation, easy fallback
Transcription service: irregular user interactions, large model, expensive
inference, inference latency not critical, rare model updates
Autonomous vehicle: on-board hardware sets limits, real-time needs, safety
critical, updates necessary, limited experimentation in practice, not always
online
Smart keyboard: privacy focused, small model, federated learning on user
device, limited telemetry

31


Common components
Model inference service: Uses model to make predictions for input
data
ML pipeline: Infrastructure to train/update the model
Monitoring: Observe model and system
Data sources: Manual/crowdsourcing/logs/telemetry/...
Data management: Storage and processing of data, often at scale
Feature store: Reusable feature engineering code, cached feature
computations

32


Common System-Wide Design Challenges
Separating concerns, understanding interdependencies

e.g., anticipating/breaking feedback loops, conflicting needs of
components

Facilitating experimentation, updates with confidence

Separating training and inference and closing the loop
e.g., collecting telemetry to learn from user interactions

Learn, serve, and observe at scale or with resource limits
e.g., cloud deployment, embedded devices

33


Scoping Relevant Qualities
of ML Components
From System Quality Requirements to Component Quality
Specifications

35


AI = DL?

36


ML Algorithms Today

37


ML Model Selection
How do I decide which ML algorithm to use for my project?

Criteria: Quality Attributes & Constraints

38


Recall: Quality Attributes
Meaurable or testable properties of a system that are used to indicate how well it satisfies its goals

Examples
Performance
Features
Reliability
Conformance
Durability
Serviceability
Aesthetics
Perceived quality
and many others

Reference:
Garvin, David A., . Sloan management review
25 (1984).

What Does Product Quality Really Mean
39



http://oqrm.org/English/What_does_product_quality_really_means.pdf

Accuracy is not Everything
Beyond prediction accuracy, what qualities may be relevant for an ML
component?

40




Collect qualities on whiteboard

Speaker notes

Qualities of Interest?
Scenario: ML component for transcribing audio files

41




Which of the previously discussed qualities are relevant?
Which additional qualities may be relevant here?

Cost per transaction; how much does it cost to transcribe? How much do
we make?

Speaker notes

Qualities of Interest?
Scenario: Component for detecting lane markings in a vehicle

42




Which of the previously discussed qualities are relevant?
Which additional qualities may be relevant here?

Realtime use

Speaker notes

Qualities of Interest?
Scenario: Component for detecting credit card frauds, as a service for
banks

43




Very high volume of transactions, low cost per transaction, frequent updates

Incrementality

Speaker notes

Common of ML Qualities to Consider
Accuracy
Correctness guarantees? Probabilistic guarantees (--> symbolic AI)
How many features?
How much data needed? Data quality important?
Incremental training possible?
Training time, memory need, model size -- depending on training
data volume and feature size
Inference time, energy efficiency, resources needed, scalability
Interpretability, explainability
Robustness, reproducibility, stability
Security, privacy, fairness

44


From: Habibullah, Khan Mohammad, Gregory Gay, and Jennifer Horkoff. "
." arXiv preprint

arXiv:2203.11063 (2022).

Non-Functional
Requirements for Machine Learning: An Exploration of System Scope and Interest

45


https://arxiv.org/abs/2203.11063

Preview: Interpretability/Explainability
"Why did the model predict X?"

Explaining predictions + Validating Models + Debugging

Some models inherently simpler to understand
Some tools may provide post-hoc explanations
Explanations may be more or less truthful
How to measure interpretability?

IF age between 18–20 and sex is male THEN predict arrest

ELSE IF age between 21–23 and 2–3 prior offenses THEN predict arrest

ELSE IF more than three priors THEN predict arrest

ELSE predict no arrest

46


Preview: Robustness

Small input modifications may change output
Small training data modifications may change predictions
How to measure robustness?

Image source: OpenAI blog
47



https://openai.com/blog/adversarial-example-research/

Preview: Fairness
Does the model perform differently for different populations?

Many different notions of fairness
Often caused by bias in training data
Enforce invariants in model or apply corrections outside model
Important consideration during requirements solicitation!

IF age between 18–20 and sex is male THEN predict arrest

ELSE IF age between 21–23 and 2–3 prior offenses THEN predict
ELSE IF more than three priors THEN predict arrest

ELSE predict no arrest

48


Recall: Measuring Qualities
Define a metric: Define units of interest

e.g., requests per second, max memory per inference, average training time in seconds for 1
million datasets

Operationalize metric: Define measurement protocol
e.g., conduct experiment: train model with fixed dataset, report median training time across 5
runs, file size, average accuracy with leave-one-out cross-validation after hyperparameter
tuning
e.g., ask 10 humans to independently label evaluation data, report
reduction in error from the
ML model over human predictions

Describe all relevant factors: Inputs/experimental units used, configuration decisions and tuning,
hardware used, protocol for manual steps

On terminology: metric/measure refer a method or standard format for measuring something;
operationalization is identifying and implementing a method to measure some factor

49


On terminology
Data scientists seem to speak of model properties when referring to
accuracy, inference time, fairness, etc

... but they also use this term for whether a learning technique can
learn non-linear relationships or whether the learning algorithm is
monotonic

Software engineering wording would usually be quality attribute,
quality requirement, quality specification
or non-functional requirement

50


Common ML Algorithms
and their Qualities

52


Linear Regression: Qualities

Tasks: Regression
Qualities: Advantages: ?? Drawbacks: ??

53




Easy to interpret, low training cost, small model size
Can't capture non-linear relationships well

Speaker notes

Decision Trees

54


Building Decision Trees
Identify all possible decisions
Select the decision that best
splits the dataset into distinct
outcomes (typically via entropy
or similar measure)
Repeatedly further split
subsets, until stopping criteria
reached

55


Decision Trees: Qualities

Tasks: Classification & regression
Qualities: Advantages: ?? Drawbacks: ??

56




Easy to interpret (up to a size); can capture non-linearity; can do well with
little data
High risk of overfitting; possibly very large tree size
Obvious ones: fairly small model size, low inference cost, no obvious incremental training; easy to interpret locally and even globally if shallow; easy to understand
decision boundaries

Speaker notes

Random Forests
Train multiple trees on subsets of data or subsets of decisions.
Return average prediction of multiple trees.
Qualities: Advantages: ?? Drawbacks: ??

57




Increased training time and model size, less prone to overfitting, more difficult to interpret

Speaker notes

Neural Networks

, cc-by-nc 2.5 Randall MunroeXKCD 2173
58



https://xkcd.com/2173/



Artificial neural networks are inspired by how biological neural networks work ("groups of chemically connected or functionally associated neurons" with synapses forming
connections)

From "Texture of the Nervous System of Man and the Vertebrates" by Santiago Ramón y Cajal, via

Speaker notes

https://en.wikipedia.org/wiki/Neural_circuit#/media/File:Cajal_actx_inter.jpg

https://en.wikipedia.org/wiki/Neural_circuit#/media/File:Cajal_actx_inter.jpg

Artificial Neural Networks
Simulating biological neural networks of neurons (nodes) and
synapses (connections), popularized in 60s and 70s

Basic building blocks: Artificial neurons, with inputs and one
output; output is activated if at least inputs are active

(assuming at least two activated inputs needed to activate output)

n
m

59


Threshold Logic Unit / Perceptron
computing weighted sum of inputs + step function

e.g., step: (z) = if (z<0) 0 else 1

z = + +. . . + = ww1x1 w2x2 wnxn x
T

ϕ

60


(and are parameters of the model)

= ϕ(+ +)o1 b1 w1,1x1 w1,2x2

= ϕ(+ +)o2 b2 w2,1x1 w2,2x2

61


Multiple Layers

62




Layers are fully connected here, but layers may have different numbers of neurons

Speaker notes

(matrix multiplications interleaved with step function)

63


Learning Model Parameters
(Backpropagation)
Intuition:

Initialize all weights with random values
Compute prediction, remembering all intermediate activations
If predicted output has an error (measured with a loss function),

Compute how much each connection contributed to the error on output
layer
Repeat computation on each lower layer
Tweak weights a little toward the correct output (gradient descent)

Continue training until weights stabilize

Works efficiently only for certain , typically logistic function: or ReLU: .
64



Deep Learning
More layers

Layers with different numbers of neurons

Different kinds of connections, e.g.,
Fully connected (feed forward)
Not fully connected (eg. convolutional networks)
Keeping state (eg. recurrent neural networks)
Skipping layers

See Chapter 10 in Géron, Aurélien. ”
”, 2nd Edition (2019) or any other book on deep learning

Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow

65


https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/6lpsnm/alma991019662775504436



Essentially the same with more layers and different kinds of architectures.

Speaker notes

Deep Learning

Tasks: Classification & regression
Qualities: Advantages: ?? Drawbacks: ??

66




High accuracy; can capture a wide range of problems (linear & non-linear)
Difficult to interpret; high training costs (time & amount of
data required, hyperparameter tuning)

Speaker notes

Example Scenario
MNIST Fashion dataset of 70k 28x28 grayscale pixel images, 10 output
classes

67


Example Scenario
MNIST Fashion dataset of 70k 28x28 grayscale pixel images, 10
output classes
28x28 = 784 inputs in input layers (each 0..255)
Example model with 3 layers, 300, 100, and 10 neurons

How many parameters does this model have?

model = keras.models.Sequential([

 keras.layers.Flatten(input_shape=[28, 28]),

 keras.layers.Dense(300, activation="relu"),

 keras.layers.Dense(100, activation="relu"),

 keras.layers.Dense(10, activation="softmax")

])

68


Example Scenario

Total of 266,610 parameters in this small example! (Assuming float
types, that's 1 MB)

model = keras.models.Sequential([

 keras.layers.Flatten(input_shape=[28, 28]),

 # 784*300+300 = 235500 parameter

 keras.layers.Dense(300, activation="relu"),

 # 300*100+100 = 30100 parameters

 keras.layers.Dense(100, activation="relu"),

 # 100*10+10 = 1010 parameters

 keras.layers.Dense(10, activation="softmax")

])

69


Network Size
50 Layer ResNet network -- classifying 224x224 images into 1000 categories

26 million weights, computes 16 million activations during inference, 168
MB to store weights as floats

Google in 2012(!): 1TB-1PB of training data, 1 billion to 1 trillion parameters
OpenAI’s GPT-2 (2019) -- text generation

48 layers, 1.5 billion weights (~12 GB to store weights)
released model reduced to 117 million weights
trained on 7-8 GPUs for 1 month with 40GB of internet text from 8 million
web pages

OpenAI’s GPT-3 (2020): 96 layers, 175 billion weights, 700 GB in memory,
$4.6M in approximate compute cost for training

70




Speaker notes

https://lambdalabs.com/blog/demystifying-gpt-3/

https://lambdalabs.com/blog/demystifying-gpt-3/

Cost & Energy Consumption
Consumption CO2

(lbs)

Air travel, 1 passenger,
NY↔SF

1984

Human life, avg, 1 year 11,023

American life, avg, 1 year 36,156

Car, avg incl. fuel, 1
lifetime

126,000

Training one model (GPU) CO2
(lbs)

NLP pipeline (parsing,
SRL)

39

w/ tuning &
experimentation

78,468

Transformer (big) 192

w/ neural architecture
search

626,155

71


Cost & Energy Consumption
Model Hardware Hours CO2 Cloud cost in

USD
Transformer P100x8 84 192 289–981

ELMo P100x3 336 262 433–1472

BERT V100x64 79 1438 3751–13K

NAS P100x8 274,120 626,155 943K–3.2M

GPT-2 TPUv3x32 168 — 13K–43K

GPT-3 — 4.6M

72


Constraints and Tradeoffs

74


ML Model Selection
How do I decide which ML algorithm to use for my project?

Criteria: Quality Attributes & Constraints

75


Constraints
Constraints define the space of attributes for valid design solutions

76




Design space exploration: The space of all possible designs (dotted rectangle) is reduced by several constraints on qualities of the system, leaving only a subset of designs
for further consideration (highlighted center area).

Speaker notes

Types of Constraints
Problem constraints: Minimum required QAs for an acceptable
product

Project constraints: Deadline, project budget, available skills

Design constraints: Type of ML task required
(regression/classification), kind of available data, limits on computing
resources, max. inference cost

Plausible constraints for cancer prognosis? For music
recommendations?

77


Trade-offs between ML algorithms
If there are multiple ML algorithms that satisfy the given constraints,
which
one do we select?

Different ML qualities may conflict with each other; this requires
making a trade-off between these qualities

Among the qualities of interest, which one(s) do we care the most
about?

And which ML algorithm is most suitable for achieving those
qualities?
(Similar to requirements conflicts)

78


Multi-Objective Optimization
Determine optimal solutions
given multiple, possibly
conflicting objectives
Dominated solution: A
solution that is inferior to
others in every way
Pareto frontier: A set of non-
dominated solutions
Consider trade-offs among
Pareto optimal solutions

79




Tradeoffs among multiple design solutions along two dimensions (cost and error). Gray solutions are all dominated by others that are better both in terms of cost and error
(e.g., solution D has worse error and worse cost than solution A). The remaining black solutions are each better than another solution on one dimension but worse on
another — they are all pareto optimal and which solution to pick depends on the relative importance of the dimensions.

Speaker notes

Trade-offs: Cost vs Accuracy

"We evaluated some of the new
methods offline but the additional
accuracy gains that we measured
did not seem to justify the
engineering effort needed to bring
them into a production
environment.”

Amatriain & Basilico. ,
Netflix Technology Blog (2012)Netflix Recommendations: Beyond the 5 stars

80


https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429

Trade-offs: Accuracy vs Interpretability

Bloom & Brink. ,
Presentation at O'Reilly Strata Conference (2014).

Overcoming the Barriers to Production-Ready Machine Learning
Workflows

81


https://conferences.oreilly.com/strata/strata2014/public/schedule/detail/32314

Breakout: Qualities & ML Algorithms
Consider two scenarios:
1. Credit card fraud detection
2. Pedestrian detection in sidewalk robot

As a group, post to #lecture tagging all group members:

Qualities of interests: ??
Constraints: ??
ML algorithm(s) to use: ??

82


Summary
Software architecture focuses on early key design decisions, focused
on key qualities

Between requirements and implementation

Decomposing the system into components, many ML components

Many qualities of interest, define metrics and operationalize

Constraints and tradeoff analysis for selecting ML techniques in
production ML settings

84


Further Readings
Bass, Len, Paul Clements, and Rick Kazman. Software architecture in practice. Addison-Wesley Professional, 3rd edition, 2012.
Yokoyama, Haruki. “Machine learning system architectural pattern for improving operational stability.” In 2019 IEEE International
Conference on Software Architecture Companion (ICSA-C), pp. 267–274. IEEE, 2019.
Serban, Alex, and Joost Visser. “An Empirical Study of Software Architecture for Machine Learning.” In Proceedings of the International
Conference on Software Analysis, Evolution and Reengineering (SANER), 2022.
Lakshmanan, Valliappa, Sara Robinson, and Michael Munn. Machine learning design patterns. O’Reilly Media, 2020.
Lewis, Grace A., Ipek Ozkaya, and Xiwei Xu. “Software Architecture Challenges for ML Systems.” In 2021 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pp. 634–638. IEEE, 2021.
Vogelsang, Andreas, and Markus Borg. “Requirements Engineering for Machine Learning: Perspectives from Data Scientists.” In Proc. of
the 6th International Workshop on Artificial Intelligence for Requirements Engineering (AIRE), 2019.
Habibullah, Khan Mohammad, Gregory Gay, and Jennifer Horkoff. "

." arXiv preprint arXiv:2203.11063 (2022).
Non-Functional Requirements for Machine Learning: An Exploration

of System Scope and Interest

85


https://arxiv.org/abs/2203.11063

