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A�er requirements...
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Learning Goals
Describe the role of architecture and design between requirements
and implementa�on
Iden�fy the different ML components and organize and priori�ze
their quality concerns for a given project
Explain they key ideas behind decision trees and random forests
and analyze consequences for various quali�es
Demonstrate an understanding of the key ideas of deep learning
and how it drives quali�es
Plan and execute an evalua�on of the quali�es of alterna�ve AI
components for a given purpose
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Readings
Required reading: Hulten, Geoff. "Building Intelligent Systems: A
Guide to Machine Learning Engineering." (2018), Chapters 17 and 18

Recommended reading: Siebert, Julien, Lisa Joeckel, Jens Heidrich,
Koji Nakamichi, Kyoko Ohashi, Isao Namba, Rieko Yamamoto, and
Mikio Aoyama. “Towards Guidelines for Assessing Quali�es of
Machine Learning Systems.” In Interna�onal Conference on the
Quality of Informa�on and Communica�ons Technology, pp. 17–31.
Springer, Cham, 2020.
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Recall: ML is a Component
in a System in an
Environment
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Recall: Systems Thinking

A system is a set of inter-related components that work together in a
par�cular environment to perform whatever func�ons are required to
achieve the system's objec�ve -- Donella Meadows
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Thinking like a So�ware
Architect
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So far: Requirements
Iden�fy goals for the system, define success metrics
Understand requirements, specifica�ons, and assump�ons
Consider risks, plan for mi�ga�ons to mistakes
Approaching component requirements: Understand quality
requirements and constraints for models and learning algorithms
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From Requirements to Implementa�ons...
We know what to build, but how? How to we meet the quality goals?

So�ware architecture: Key design decisions, early on, focused on key
quali�es

Architectural decisions are hard to change later
13





So�ware Architecture
The so�ware architecture of a program or compu�ng system is the
structure or structures of the system, which comprise so�ware elements,
the externally visible proper�es of those elements, and the rela�onships
among them. -- Kazman et al. 2012
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https://www.oreilly.com/library/view/software-architecture-in/9780132942799/?ar


How much Architecture/Design?
So�ware Engineering Theme: Think before you code

Like requirements: Upfront investment can prevent problems later,
but slower ini�ally

-> Focus on most important quali�es early, but leave flexibility
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Quality Requirements Drive Architecture
Design
Driven by requirements, iden�fy most important quali�es

Examples:
Development cost, opera�onal cost, �me to release
Scalability, availability, response �me, throughput
Security, safety, usability, fairness
Ease of modifica�ons and updates
ML: Accuracy, ability to collect data, training latency
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Why Architecture? ( )
Represents earliest design decisions.

Aids in communica�on with stakeholders: Shows them “how” at a level they can understand, raising
ques�ons about whether it meets their needs

Defines constraints on implementa�on: Design decisions form “load-bearing walls” of applica�on

Dictates organiza�onal structure: Teams work on different components

Inhibits or enables quality a�ributes: Similar to design pa�erns

Supports predic�ng cost, quality, and schedule: Typically by predic�ng informa�on for each
component

Aids in so�ware evolu�on: Reason about cost, design, and effect of changes

Kazman et al. 2012
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https://www.oreilly.com/library/view/software-architecture-in/9780132942799/?ar


Case Study: Twi�er
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Source and additional reading: Raffi.  Twitter Blog, 2013

Speaker notes

New Tweets per second record, and how!

https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html


Twi�er - Caching Architecture
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Running one of the world’s largest Ruby on Rails installations
200 engineers
Monolithic: managing raw database, memcache, rendering the site, and * presenting the public APIs in one codebase
Increasingly difficult to understand system; organizationally challenging to manage and parallelize engineering teams
Reached the limit of throughput on our storage systems (MySQL); read and write hot spots throughout our databases
Throwing machines at the problem; low throughput per machine (CPU + RAM limit, network not saturated)
Optimization corner: trading off code readability vs performance

Speaker notes



Twi�er's Redesign Goals
Performance

Improve median latency; lower outliers
Reduce number of machines 10x  

Reliability
Isolate failures

Maintainability
"We wanted cleaner boundaries with “related” logic being in one place":
encapsula�on and modularity at the systems level (vs class/package level)

Modifiability
Quicker release of new features: "run small and empowered engineering teams
that could make local decisions and ship user-facing changes, independent of
other teams"
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Twi�er: Redesign Decisions
Ruby on Rails -> JVM/Scala
Monolith -> Microservices
RPC framework with
monitoring, connec�on
pooling, failover strategies,
loadbalancing, ... built in
New storage solu�on,
temporal clustering, "roughly
sortable ids"
Data driven decision making
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Twi�er Case Study: Key Insights
Architectural decisions affect en�re systems, not only individual
modules

Abstract, different abstrac�ons for different scenarios

Reason about quality a�ributes early

Make architectural decisions explicit

Ques�on: Did the original architect make poor decisions?
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Decomposi�on, Interfaces,
and Responsibility
Assignm.
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System Decomposi�on

Iden�fy components and their responsibili�es

Establishes interfaces and team boundaries
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Informa�on Hiding
Decomposi�on enables scaling teams

Each team works on a component

Need to coordinate on interfaces, but implementa�ons remain hidden

Interface descrip�ons are cru�al
Who is responsible for what
Component requirements (specifica�ons), behavioral and quality
Especially consider nonlocal quali�es: e.g., safety, privacy

Interfaces rarely fully specified in prac�ce, source of conflicts
26





Each system is different...
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Each system is different...
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Each system is different...
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Each system is different...
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System Decomposi�on
Each system is different, iden�fy important components

Examples:
Personalized music recommenda�ons: microserivce deployment in cloud,
logging of user ac�vi�y, nightly batch processing for inference, regular model
updates, regular experimenta�on, easy fallback
Transcrip�on service: irregular user interac�ons, large model, expensive
inference, inference latency not cri�cal, rare model updates
Autonomous vehicle: on-board hardware sets limits, real-�me needs, safety
cri�cal, updates necessary, limited experimenta�on in prac�ce, not always
online
Smart keyboard: privacy focused, small model, federated learning on user
device, limited telemetry
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Common components
Model inference service: Uses model to make predic�ons for input
data
ML pipeline: Infrastructure to train/update the model
Monitoring: Observe model and system
Data sources: Manual/crowdsourcing/logs/telemetry/...
Data management: Storage and processing of data, o�en at scale
Feature store: Reusable feature engineering code, cached feature
computa�ons
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Common System-Wide Design Challenges
Separa�ng concerns, understanding interdependencies

e.g., an�cipa�ng/breaking feedback loops, conflic�ng needs of
components

Facilita�ng experimenta�on, updates with confidence

Separa�ng training and inference and closing the loop
e.g., collec�ng telemetry to learn from user interac�ons

Learn, serve, and observe at scale or with resource limits
e.g., cloud deployment, embedded devices
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Scoping Relevant Quali�es
of ML Components
From System Quality Requirements to Component Quality
Specifica�ons
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AI = DL?
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ML Algorithms Today
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ML Model Selec�on
How do I decide which ML algorithm to use for my project?

Criteria: Quality A�ributes & Constraints

38




Recall: Quality A�ributes
Meaurable or testable proper�es of a system that are used to indicate how well it sa�sfies its goals

Examples
Performance
Features
Reliability
Conformance
Durability
Serviceability
Aesthe�cs
Perceived quality
and many others

Reference: Garvin, David A., . Sloan management review
25 (1984).

What Does Product Quality Really Mean
39



http://oqrm.org/English/What_does_product_quality_really_means.pdf


Accuracy is not Everything
Beyond predic�on accuracy, what quali�es may be relevant for an ML
component?
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Collect qualities on whiteboard

Speaker notes



Quali�es of Interest?
Scenario: ML component for transcribing audio files
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Which of the previously discussed qualities are relevant? Which additional qualities may be relevant here?

Cost per transaction; how much does it cost to transcribe? How much do we make?

Speaker notes



Quali�es of Interest?
Scenario: Component for detec�ng lane markings in a vehicle
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Which of the previously discussed qualities are relevant? Which additional qualities may be relevant here?

Realtime use

Speaker notes



Quali�es of Interest?
Scenario: Component for detec�ng credit card frauds, as a service for
banks
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Very high volume of transactions, low cost per transaction, frequent updates

Incrementality

Speaker notes



Common of ML Quali�es to Consider
Accuracy
Correctness guarantees? Probabilis�c guarantees (--> symbolic AI)
How many features?
How much data needed? Data quality important?
Incremental training possible?
Training �me, memory need, model size -- depending on training
data volume and feature size
Inference �me, energy efficiency, resources needed, scalability
Interpretability, explainability
Robustness, reproducibility, stability
Security, privacy, fairness
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From: Habibullah, Khan Mohammad, Gregory Gay, and Jennifer Horkoff. "
." arXiv preprint

arXiv:2203.11063 (2022).

Non-Func�onal
Requirements for Machine Learning: An Explora�on of System Scope and Interest
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https://arxiv.org/abs/2203.11063


Preview: Interpretability/Explainability
"Why did the model predict X?"

Explaining predic�ons + Valida�ng Models + Debugging

Some models inherently simpler to understand
Some tools may provide post-hoc explana�ons
Explana�ons may be more or less truthful
How to measure interpretability?

IF age between 18–20 and sex is male THEN predict arrest 
ELSE IF age between 21–23 and 2–3 prior offenses THEN predict arrest 
ELSE IF more than three priors THEN predict arrest 
ELSE predict no arrest 
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Preview: Robustness

Small input modifica�ons may change output
Small training data modifica�ons may change predic�ons
How to measure robustness?

Image source: OpenAI blog
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https://openai.com/blog/adversarial-example-research/


Preview: Fairness
Does the model perform differently for different popula�ons?

Many different no�ons of fairness
O�en caused by bias in training data
Enforce invariants in model or apply correc�ons outside model
Important considera�on during requirements solicita�on!

IF age between 18–20 and sex is male THEN predict arrest 
ELSE IF age between 21–23 and 2–3 prior offenses THEN predict 
ELSE IF more than three priors THEN predict arrest 
ELSE predict no arrest 
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Recall: Measuring Quali�es
Define a metric: Define units of interest

e.g., requests per second, max memory per inference, average training �me in seconds for 1
million datasets

Opera�onalize metric: Define measurement protocol
e.g., conduct experiment: train model with fixed dataset, report median training �me across 5
runs, file size, average accuracy with leave-one-out cross-valida�on a�er hyperparameter
tuning
e.g., ask 10 humans to independently label evalua�on data, report reduc�on in error from the
ML model over human predic�ons

Describe all relevant factors: Inputs/experimental units used, configura�on decisions and tuning,
hardware used, protocol for manual steps

On terminology: metric/measure refer a method or standard format for measuring something;
opera�onaliza�on is iden�fying and implemen�ng a method to measure some factor
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On terminology
Data scien�sts seem to speak of model proper�es when referring to
accuracy, inference �me, fairness, etc

... but they also use this term for whether a learning technique can
learn non-linear rela�onships or whether the learning algorithm is
monotonic

So�ware engineering wording would usually be quality a�ribute,
quality requirement, quality specifica�on or non-func�onal requirement
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Common ML Algorithms
and their Quali�es
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Linear Regression: Quali�es

Tasks: Regression
Quali�es: Advantages: ?? Drawbacks: ??
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Easy to interpret, low training cost, small model size
Can't capture non-linear relationships well

Speaker notes



Decision Trees
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Building Decision Trees
Iden�fy all possible decisions
Select the decision that best
splits the dataset into dis�nct
outcomes (typically via entropy
or similar measure)
Repeatedly further split
subsets, un�l stopping criteria
reached
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Decision Trees: Quali�es

Tasks: Classifica�on & regression
Quali�es: Advantages: ?? Drawbacks: ??
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Easy to interpret (up to a size); can capture non-linearity; can do well with little data
High risk of overfitting; possibly very large tree size
Obvious ones: fairly small model size, low inference cost, no obvious incremental training; easy to interpret locally and even globally if shallow; easy to understand
decision boundaries

Speaker notes



Random Forests
Train mul�ple trees on subsets of data or subsets of decisions.
Return average predic�on of mul�ple trees.
Quali�es: Advantages: ?? Drawbacks: ??
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Increased training time and model size, less prone to overfitting, more difficult to interpret

Speaker notes



Neural Networks

, cc-by-nc 2.5 Randall MunroeXKCD 2173
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https://xkcd.com/2173/




Artificial neural networks are inspired by how biological neural networks work ("groups of chemically connected or functionally associated neurons" with synapses forming
connections)

From "Texture of the Nervous System of Man and the Vertebrates" by Santiago Ramón y Cajal, via

Speaker notes

https://en.wikipedia.org/wiki/Neural_circuit#/media/File:Cajal_actx_inter.jpg

https://en.wikipedia.org/wiki/Neural_circuit#/media/File:Cajal_actx_inter.jpg


Ar�ficial Neural Networks
Simula�ng biological neural networks of neurons (nodes) and
synapses (connec�ons), popularized in 60s and 70s

Basic building blocks: Ar�ficial neurons, with  inputs and one
output; output is ac�vated if at least  inputs are ac�ve

(assuming at least two ac�vated inputs needed to ac�vate output)

n
m
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Threshold Logic Unit / Perceptron
compu�ng weighted sum of inputs + step func�on

e.g., step: (z) = if (z<0) 0 else 1

z = + +. . . + = ww1x1 w2x2 wnxn x
T

ϕ
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( and are parameters of the model)

= ϕ( + + )o1 b1 w1,1x1 w1,2x2

= ϕ( + + )o2 b2 w2,1x1 w2,2x2
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Mul�ple Layers
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Layers are fully connected here, but layers may have different numbers of neurons

Speaker notes



(matrix mul�plica�ons interleaved with step func�on)
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Learning Model Parameters
(Backpropaga�on)
Intui�on:

Ini�alize all weights with random values
Compute predic�on, remembering all intermediate ac�va�ons
If predicted output has an error (measured with a loss func�on),

Compute how much each connec�on contributed to the error on output
layer
Repeat computa�on on each lower layer
Tweak weights a li�le toward the correct output (gradient descent)

Con�nue training un�l weights stabilize

Works efficiently only for certain , typically logis�c func�on: or ReLU: .
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Deep Learning
More layers

Layers with different numbers of neurons

Different kinds of connec�ons, e.g.,
Fully connected (feed forward)
Not fully connected (eg. convolu�onal networks)
Keeping state (eg. recurrent neural networks)
Skipping layers

See Chapter 10 in Géron, Aurélien. ”
”, 2nd Edi�on (2019) or any other book on deep learning

Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow
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https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/6lpsnm/alma991019662775504436




Essentially the same with more layers and different kinds of architectures.

Speaker notes



Deep Learning

Tasks: Classifica�on & regression
Quali�es: Advantages: ?? Drawbacks: ??
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High accuracy; can capture a wide range of problems (linear & non-linear)
Difficult to interpret; high training costs (time & amount of data required, hyperparameter tuning)

Speaker notes



Example Scenario
MNIST Fashion dataset of 70k 28x28 grayscale pixel images, 10 output
classes
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Example Scenario
MNIST Fashion dataset of 70k 28x28 grayscale pixel images, 10
output classes
28x28 = 784 inputs in input layers (each 0..255)
Example model with 3 layers, 300, 100, and 10 neurons

How many parameters does this model have?

model = keras.models.Sequential([ 
  keras.layers.Flatten(input_shape=[28, 28]), 
  keras.layers.Dense(300, activation="relu"), 
  keras.layers.Dense(100, activation="relu"), 
  keras.layers.Dense(10, activation="softmax") 
]) 
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Example Scenario

Total of 266,610 parameters in this small example! (Assuming float
types, that's 1 MB)

model = keras.models.Sequential([ 
  keras.layers.Flatten(input_shape=[28, 28]), 
  # 784*300+300 = 235500 parameter 
  keras.layers.Dense(300, activation="relu"),  
  # 300*100+100 = 30100 parameters 
  keras.layers.Dense(100, activation="relu"), 
  # 100*10+10 = 1010 parameters 
  keras.layers.Dense(10, activation="softmax") 
]) 
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Network Size
50 Layer ResNet network -- classifying 224x224 images into 1000 categories

26 million weights, computes 16 million ac�va�ons during inference, 168
MB to store weights as floats

Google in 2012(!): 1TB-1PB of training data, 1 billion to 1 trillion parameters
OpenAI’s GPT-2 (2019) -- text genera�on

48 layers, 1.5 billion weights (~12 GB to store weights)
released model reduced to 117 million weights
trained on 7-8 GPUs for 1 month with 40GB of internet text from 8 million
web pages

OpenAI’s GPT-3 (2020): 96 layers, 175 billion weights, 700 GB in memory,
$4.6M in approximate compute cost for training
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https://lambdalabs.com/blog/demystifying-gpt-3/

https://lambdalabs.com/blog/demystifying-gpt-3/


Cost & Energy Consump�on
Consump�on CO2

(lbs)

Air travel, 1 passenger,
NY↔SF

1984

Human life, avg, 1 year 11,023

American life, avg, 1 year 36,156

Car, avg incl. fuel, 1
life�me

126,000

Training one model (GPU) CO2
(lbs)

NLP pipeline (parsing,
SRL)

39

w/ tuning &
experimenta�on

78,468

Transformer (big) 192

w/ neural architecture
search

626,155
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Cost & Energy Consump�on
Model Hardware Hours CO2 Cloud cost in

USD
Transformer P100x8 84 192 289–981

ELMo P100x3 336 262 433–1472

BERT V100x64 79 1438 3751–13K

NAS P100x8 274,120 626,155 943K–3.2M

GPT-2 TPUv3x32 168 — 13K–43K

GPT-3 — 4.6M
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Constraints and Tradeoffs
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ML Model Selec�on
How do I decide which ML algorithm to use for my project?

Criteria: Quality A�ributes & Constraints
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Constraints
Constraints define the space of a�ributes for valid design solu�ons
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Design space exploration: The space of all possible designs (dotted rectangle) is reduced by several constraints on qualities of the system, leaving only a subset of designs
for further consideration (highlighted center area).

Speaker notes



Types of Constraints
Problem constraints: Minimum required QAs for an acceptable
product

Project constraints: Deadline, project budget, available skills

Design constraints: Type of ML task required
(regression/classifica�on), kind of available data, limits on compu�ng
resources, max. inference cost

Plausible constraints for cancer prognosis? For music
recommenda�ons?
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Trade-offs between ML algorithms
If there are mul�ple ML algorithms that sa�sfy the given constraints,
which one do we select?

Different ML quali�es may conflict with each other; this requires
making a trade-off between these quali�es

Among the quali�es of interest, which one(s) do we care the most
about?

And which ML algorithm is most suitable for achieving those
quali�es?
(Similar to requirements conflicts)
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Mul�-Objec�ve Op�miza�on
Determine op�mal solu�ons
given mul�ple, possibly
conflic�ng objec�ves
Dominated solu�on: A
solu�on that is inferior to
others in every way
Pareto fron�er: A set of non-
dominated solu�ons
Consider trade-offs among
Pareto op�mal solu�ons
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Tradeoffs among multiple design solutions along two dimensions (cost and error). Gray solutions are all dominated by others that are better both in terms of cost and error
(e.g., solution D has worse error and worse cost than solution A). The remaining black solutions are each better than another solution on one dimension but worse on
another — they are all pareto optimal and which solution to pick depends on the relative importance of the dimensions.

Speaker notes



Trade-offs: Cost vs Accuracy

"We evaluated some of the new
methods offline but the addi�onal
accuracy gains that we measured
did not seem to jus�fy the
engineering effort needed to bring
them into a produc�on
environment.”

Amatriain & Basilico. , Ne�lix Technology Blog (2012)Ne�lix Recommenda�ons: Beyond the 5 stars
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https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429


Trade-offs: Accuracy vs Interpretability

Bloom & Brink. ,
Presenta�on at O'Reilly Strata Conference (2014).

Overcoming the Barriers to Produc�on-Ready Machine Learning Workflows
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https://conferences.oreilly.com/strata/strata2014/public/schedule/detail/32314


Breakout: Quali�es & ML Algorithms
Consider two scenarios:
1. Credit card fraud detec�on
2. Pedestrian detec�on in sidewalk robot

As a group, post to #lecture tagging all group members:

Quali�es of interests: ??
Constraints: ??
ML algorithm(s) to use: ??
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Summary
So�ware architecture focuses on early key design decisions, focused
on key quali�es

Between requirements and implementa�on

Decomposing the system into components, many ML components

Many quali�es of interest, define metrics and opera�onalize

Constraints and tradeoff analysis for selec�ng ML techniques in
produc�on ML se�ngs
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Further Readings
Bass, Len, Paul Clements, and Rick Kazman. So�ware architecture in prac�ce. Addison-Wesley Professional, 3rd edi�on, 2012.
Yokoyama, Haruki. “Machine learning system architectural pa�ern for improving opera�onal stability.” In 2019 IEEE Interna�onal
Conference on So�ware Architecture Companion (ICSA-C), pp. 267–274. IEEE, 2019.
Serban, Alex, and Joost Visser. “An Empirical Study of So�ware Architecture for Machine Learning.” In Proceedings of the Interna�onal
Conference on So�ware Analysis, Evolu�on and Reengineering (SANER), 2022.
Lakshmanan, Valliappa, Sara Robinson, and Michael Munn. Machine learning design pa�erns. O’Reilly Media, 2020.
Lewis, Grace A., Ipek Ozkaya, and Xiwei Xu. “So�ware Architecture Challenges for ML Systems.” In 2021 IEEE Interna�onal Conference
on So�ware Maintenance and Evolu�on (ICSME), pp. 634–638. IEEE, 2021.
Vogelsang, Andreas, and Markus Borg. “Requirements Engineering for Machine Learning: Perspec�ves from Data Scien�sts.” In Proc. of
the 6th Interna�onal Workshop on Ar�ficial Intelligence for Requirements Engineering (AIRE), 2019.
Habibullah, Khan Mohammad, Gregory Gay, and Jennifer Horkoff. "

." arXiv preprint arXiv:2203.11063 (2022).
Non-Func�onal Requirements for Machine Learning: An Explora�on

of System Scope and Interest
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