
Machine Learning in Produc�onMachine Learning in Produc�on

Infrastructure Quality &Infrastructure Quality &
MLOpsMLOps

1

Infrastructure and Opera�ons...

3

Readings
Required reading: Eric Breck, Shanqing Cai, Eric Nielsen, Michael
Salib, D. Sculley.

. Proceedings of IEEE Big
Data (2017)

Recommended readings:
O'Leary, Ka�e, and Makoto Uchida. "

." Proc.
Conference on Machine Learning and Systems (MLSys) (2020).
Larysa Visengeriyeva.

, InnoQ 2020

The ML Test Score: A Rubric for ML Produc�on
Readiness and Technical Debt Reduc�on

Common problems with
Crea�ng Machine Learning Pipelines from Exis�ng Code

Machine Learning Opera�ons - A Reading
List

4

https://research.google.com/pubs/archive/46555.pdf
https://research.google/pubs/pub48984.pdf
https://ml-ops.org/content/references.html

Learning Goals
Implement and automate tests for all parts of the ML pipeline
Understand tes�ng opportuni�es beyond func�onal correctness
Automate test execu�on with con�nuous integra�on
Deploy a service for models using container infrastructure
Automate common configura�on management tasks
Devise a monitoring strategy and suggest suitable components for
implemen�ng it
Diagnose common opera�ons problems
Understand the typical concerns and concepts of MLOps

5

Beyond Model and Data
Quality

7

Possible Mistakes in ML Pipelines

Danger of "silent" mistakes in many phases

Examples?

8

Possible Mistakes in ML Pipelines
Danger of "silent" mistakes in many phases:

Dropped data a�er format changes
Failure to push updated model into produc�on
Incorrect feature extrac�on
Use of stale dataset, wrong data source
Data source no longer available (e.g web API)
Telemetry server overloaded
Nega�ve feedback (telemtr.) no longer sent from app
Use of old model learning code, stale hyperparameter
Data format changes between ML pipeline steps

9

Building Robust Pipeline Automa�on
Support experimenta�on and evolu�on

Automate
Design for change
Design for observability
Tes�ng the pipeline for robustness

Thinking in pipelines, not models
Integra�ng the Pipeline with other Components

10

Integra�ng the Pipeline with other
Components

11

Pipelines are Code
From experimental notebook code to produc�on code

Each stage as a func�on or module

Well tested in isola�on and together

Robust to changes in inputs (automa�cally adapt or crash, no silent
mistakes)

Use good engineering prac�ces (version control, documenta�on,
tes�ng, naming, code review)

12

Everything can be tested?

13

Many qualities can be tested beyond just functional correctness (for a specification). Examples: Performance, model quality, data quality, usability, robustness, ... not all
tests are equality easy to automate

Speaker notes

Tes�ng Strategies
Performance
Scalability
Robustness
Safety
Security
Extensibility
Maintainability
Usability

How to test for these? How automatable?

14

Test Automa�on

16

From Manual Tes�ng to Con�nuous
Integra�on

17

Unit Test, Integra�on Tests, System Tests

18

Software is developed in units that are later assembled. Accordingly we can distinguish different levels of testing.

Unit Testing - A unit is the "smallest" piece of software that a developer creates. It is typically the work of one programmer and is stored in a single file. Different
programming languages have different units: In C++ and Java the unit is the class; in C the unit is the function; in less structured languages like Basic and COBOL the unit
may be the entire program.

Integration Testing - In integration we assemble units together into subsystems and finally into systems. It is possible for units to function perfectly in isolation but to fail
when integrated. For example because they share an area of the computer memory or because the order of invocation of the different methods is not the one anticipated by
the different programmers or because there is a mismatch in the data types. Etc.

System Testing - A system consists of all of the software (and possibly hardware, user manuals, training materials, etc.) that make up the product delivered to the customer.
System testing focuses on defects that arise at this highest level of integration. Typically system testing includes many types of testing: functionality, usability, security,
internationalization and localization, reliability and availability, capacity, performance, backup and recovery, portability, and many more.

Acceptance Testing - Acceptance testing is defined as that testing, which when completed successfully, will result in the customer accepting the software and giving us their
money. From the customer's point of view, they would generally like the most exhaustive acceptance testing possible (equivalent to the level of system testing). From the
vendor's point of view, we would generally like the minimum level of testing possible that would result in money changing hands. Typical strategic questions that should be
addressed before acceptance testing are: Who defines the level of the acceptance testing? Who creates the test scripts? Who executes the tests? What is the pass/fail
criteria for the acceptance test? When and how do we get paid?

Speaker notes

Anatomy of a Unit Test
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {
 @Test
 public void testSanityTest(){
 // set up
 Graph g1 = new AdjacencyListGraph(10);
 Vertex s1 = new Vertex("A");
 Vertex s2 = new Vertex("B");
 // check expected results (oracle)

19

Ingredients to a Test
Specifica�on

Controlled environment

Test inputs (calls and parameters)

Expected outputs/behavior (oracle)

20

Unit Tes�ng Pi�alls
Working code, failing tests

"Works on my machine"

Tests break frequently

How to avoid?

21

How to unit test component with
dependency on other code?

22

How to Test Parts of a System?

Model learn() {
 Stream stream = openKafkaStream(...)
 DataTable output = getData(testStream,
 new DefaultCleaner());
 return Model.learn(output);
}

23

Automa�ng Test Execu�on

DataTable getData(Stream stream, DataCleaner cleaner) { ... }

@Test void test() {
 Stream stream = openKafkaStream(...)
 DataTable output = getData(stream,
 new DefaultCleaner());
 assert(output.length==10)
} 24

Decoupling from Dependencies

DataTable getData(Stream stream, DataCleaner cleaner) { ... }
Stream testStream = new Stream() {
 int idx = 0;
 // hardcoded or read from test file
 String[] data = [...]
 public void connect() { }
 public String getNext() {
 return data[++idx]; 25

General Tes�ng Strategy: Decoupling Code
Under Test

26

Example: Mocking a DataCleaner Object
DataTable getData(KafkaStream stream, DataCleaner cleaner){...

@Test void test() {
 DataCleaner dummyCleaner = new DataCleaner() {
 boolean isValid(String row) { return true; }
 ...
 }
 DataTable output = getData(testStream, dummyCleaner);
 assert(output.length==10)
}

27

Example: Mocking a DataCleaner Object

Mocking frameworks provide infrastructure for expressing such tests
compactly.

DataTable getData(KafkaStream stream, DataCleaner cleaner){...

@Test void test() {
 DataCleaner dummyCleaner = new DataCleaner() {
 int counter = 0;
 boolean isValid(String row) {
 counter++;
 return counter!=3;
 }
 ...
 }

28

Subtle Bugs in Data Wrangling Code
df['Join_year'] = df.Joined.dropna().map(
 lambda x: x.split(',')[1].split(' ')[1])

df.loc[idx_nan_age,'Age'].loc[idx_nan_age] =
 df['Title'].loc[idx_nan_age].map(map_means)

df["Weight"].astype(str).astype(int)

29

Subtle Bugs in Data Wrangling Code
(con�nued)
df['Reviws'] = df['Reviews'].apply(int)

df["Release Clause"] =
 df["Release Clause"].replace(regex=['k'], value='000')

df["Release Clause"] =
 df["Release Clause"].astype(str).astype(float)

30

1 attempting to remove na values from column, not table

2 loc[] called twice, resulting in assignment to temporary column only

3 astype() is not an in-place operation

4 typo in column name

5&6 modeling problem (k vs K)

Speaker notes

Tests for Data Wranging Code?
(data quality checks, data cleaning, feature engineering, ...)

31

Modularizing and Tes�ng Data Cleaning
def is_valid_row(row):
 try:
 datetime.strptime(row['date'], '%b %d %Y')
 return true
 except ValueError:
 return false

@test
def test_dates(self):
 self.assertTrue(is_valid_row(...))
 self.assertTrue(is_valid_row(...))
 self.assertFalse(is_valid_row(...))

32

Modularize and Test Feature Encoding
def encode_date(df):
 df.date_time = pd.to_datetime(df.date_time)
def encode_day_part(df):
 def daypart(hour):
 if hour in [2,3,4,5]:
 return "dawn"
 elif hour in [6,7,8,9]:
 return "morning"
 elif hour in [10,11,12,13]:
 return "noon"
 elif ...

@test
def test_day_part(self): ...

33

Test Error Handling

(This tests expects the learn func�on to throw an excep�on. Test fails if
no excep�on thrown.)

@Test void missingDataErrorTest() {
 DataTable missingData = new DataTable();
 try {
 Model m = learn(missingData);
 Assert.fail();
 } catch (NoDataException e) { /* correctly thrown */ }
}

34

Code to test that the right exception is thrown

Speaker notes

Tes�ng for Robustness

(manipula�ng the (controlled) environment: injec�ng errors into backend
to test error handling)

Stream faultyTestStream = new Stream() {
 ...
 public String getNext() {
 if (++idx == 3) throw new IOException();
 return data[++idx];
 }}
@Test void retryOnStreamProblemTest() {
 DataTable output = retry(getData(faultyTestStream, ...));
 assert(output.length==10)
}

35

Test Modular Error Handling

(Modular protec�on/isola�on: Ensure error is handled locally and does
not propagate to other modules.)

Stream faultyTestStream = new Stream() {
 int idx = 0;
 public void connect() {
 if (++idx < 3) throw new IOException(
 "cannot establish connection")
 }
 public String getNext() { ... }
}
@Test void integrationTest() {
 DataLoader loader = new DataLoader(faultyTestStream,
 new DefaultCleaner());

36

Test that errors are correctly handled within a module and do not leak

Speaker notes

37

Testable Code
Think about tes�ng when wri�ng code

Unit tes�ng encourages you to write testable code

Separate parts of the code to make them independently testable

Abstract func�onality behind interface, make it replaceable

Bonus: Test-Driven Development is a design and development
method in which you always write tests before wri�ng code

38

Integra�on and system tests

39

Integra�on and system tests
Test larger units of behavior

O�en based on use cases or user stories -- customer perspec�ve

@Test void gameTest() {
 Poker game = new Poker();
 Player p = new Player();
 Player q = new Player();
 game.shuffle(seed)
 game.add(p);
 game.add(q);
 game.deal();
 p.bet(100);
 q.bet(100);

40

Integra�on and system tests
Test larger units of behavior

O�en based on use cases or user stories -- customer perspec�ve

@Test void testCleaningWithFeatureEng() {
 DataFrame d = loadTestData();
 DataFrame cd = clean(d);
 DataFrame f = feature3.encode(cd);
 assert(noMissingValues(f.getColumn("m")));
 assert(max(f.getColumn("m"))<=1.0);
}

41

Data Pipeline Integra�on Test
@Test void integrationTest() {
 DataLoader loader = new DataLoader(testStream,
 new DefaultCleaner());
 ModelBuilder model = new ModelBuilder(loader, ...);
 // assume all exceptions are handled correctly internally
 assert(model.accuracy > .91)
}

42

Build systems & Con�nuous Integra�on
Automate all build, analysis, test, and deployment steps from a
command line call

Ensure all dependencies and configura�ons are defined

Ideally reproducible and incremental

Distribute work for large jobs

Track results

Key CI benefit: Tests are regularly executed, part of process

43

44

Tracking Build Quality
Track quality indicators over �me, e.g.,

Build �me
Test coverage
Sta�c analysis warnings
Performance results
Model quality measures
Number of TODOs in source code

45

46

https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/

Tracking Model Quali�es
Many tools: MLFlow, ModelDB, Neptune, TensorBoard, Weights &
Biases, Comet.ml, ...

47

ModelDB Example
from verta import Client
client = Client("http://localhost:3000")

proj = client.set_project("My first ModelDB project")
expt = client.set_experiment("Default Experiment")

log a training run
run = client.set_experiment_run("First Run")
run.log_hyperparameters({"regularization" : 0.5})
model1 = # ... model training code goes here
run.log metric('accuracy', accuracy(model1, validationData))

48

Test Monitoring
Inject/simulate faulty behavior
Mock out no�fica�on service used by monitoring
Assert no�fica�on

class MyNotificationService extends NotificationService {
 public boolean receivedNotification = false;
 public void sendNotification(String msg) {
 receivedNotification = true; }
}
@Test void test() {
 Server s = getServer();
 MyNotificationService n = new MyNotificationService();
 Monitor m = new Monitor(s, n);
 s.stop();

49

Test Monitoring in Produc�on
Like fire drills (manual tests may be okay!)

Manual tests in produc�on, repeat regularly

Actually take down service or trigger wrong signal to monitor

50

Chaos Tes�ng

h�p://principlesofchaos.org
51

http://principlesofchaos.org/

Chaos Engineering is the discipline of experimenting on a distributed system in order to build confidence in the system’s capability to withstand turbulent conditions in
production. Pioneered at Netflix

Speaker notes

Chaos Tes�ng Argument
Distributed systems are simply too complex to comprehensively
predict

experiment to learn how it behaves in the presence of faults
Base correc�ve ac�ons on experimental results because they
reflect real risks and actual events

Experimenta�on != tes�ng -- Observe behavior rather then expect
specific results
Simulate real-world problem in produc�on (e.g., take down server,
inject latency)
Minimize blast radius: Contain experiment scope

52

Ne�lix's Simian Army
Chaos Monkey: randomly disable produc�on instances
Latency Monkey: induces ar�ficial delays in our RESTful client-server
communica�on layer
Conformity Monkey: finds instances that don’t adhere to best-prac�ces and
shuts them down
Doctor Monkey: monitors external signs of health to detect unhealthy
instances
Janitor Monkey: ensures cloud environment is running free of clu�er and waste
Security Monkey: finds security viola�ons or vulnerabili�es, and terminates the
offending instances
10–18 Monkey: detects problems in instances serving customers in mul�ple
geographic regions
Chaos Gorilla is similar to Chaos Monkey, but simulates an outage of an en�re
Amazon availability zone. 53

Chaos Toolkit
Infrastructure for chaos experiments
Driver for various infrastructure and failure cases
Domain specific language for experiment defini�ons

{
 "version": "1.0.0",
 "title": "What is the impact of an expired certificate on
 "description": "If a certificate expires, we should gracef
 "tags": ["tls"],
 "steady-state-hypothesis": {
 "title": "Application responds",
 "probes": [
 {
 "type": "probe",

54

Chaos Experiments for ML Infrastructure?

55

Fault injection in production for testing in production. Requires monitoring and explicit experiments.

Speaker notes

Code Review and Sta�c
Analysis

57

Code Review
Manual inspec�on of code

Looking for problems and possible improvements
Possibly following checklists
Individually or as group

Modern code review: Incremental review at checking
Review individual changes before merging
Pull requests on GitHub
Not very effec�ve at finding bugs, but many other benefits:
knowledge transfer, code imporvement, shared code ownership,
improving tes�ng

58

59

Subtle Bugs in Data Wrangling Code
df['Join_year'] = df.Joined.dropna().map(
 lambda x: x.split(',')[1].split(' ')[1])

df.loc[idx_nan_age,'Age'].loc[idx_nan_age] =
 df['Title'].loc[idx_nan_age].map(map_means)

df["Weight"].astype(str).astype(int)

df['Reviws'] = df['Reviews'].apply(int)

60

We did code review earlier together

Speaker notes

Sta�c Analysis, Code Lin�ng
Automa�c detec�on of problema�c pa�erns based on code structure

if (user.jobTitle = "manager") {
 ...
}

function fn() {
 x = 1;
 return x;
 x = 3;
}

61

Process Integra�on: Sta�c Analysis
Warnings during Code Review

62

Social engineering to force developers to pay attention. Also possible with integration in pull requests on GitHub.

Speaker notes

Infrastructure Tes�ng

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Produc�on Readiness and Technical Debt Reduc�on

64

https://research.google.com/pubs/archive/46555.pdf

Source: Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data

The ML Test Score: A
Rubric for ML Produc�on Readiness and Technical Debt Reduc�on

65

https://research.google.com/pubs/archive/46555.pdf

Data Tests
1. Feature expecta�ons are captured in a schema.
2. All features are beneficial.
3. No feature’s cost is too much.
4. Features adhere to meta-level requirements.
5. The data pipeline has appropriate privacy controls.
6. New features can be added quickly.
7. All input feature code is tested.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Produc�on Readiness and Technical Debt Reduc�on

66

https://research.google.com/pubs/archive/46555.pdf

Tests for Model Development
1. Model specs are reviewed and submi�ed.
2. Offline and online metrics correlate.
3. All hyperparameters have been tuned.
4. The impact of model staleness is known.
5. A simpler model is not be�er.
6. Model quality is sufficient on important data slices.
7. The model is tested for considera�ons of inclusion.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Produc�on Readiness and Technical Debt Reduc�on

67

https://research.google.com/pubs/archive/46555.pdf

ML Infrastructure Tests
1. Training is reproducible.
2. Model specs are unit tested.
3. The ML pipeline is Integra�on tested.
4. Model quality is validated before serving.
5. The model is debuggable.
6. Models are canaried before serving.
7. Serving models can be rolled back.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Produc�on Readiness and Technical Debt Reduc�on

68

https://research.google.com/pubs/archive/46555.pdf

Monitoring Tests
1. Dependency changes result in no�fica�on.
2. Data invariants hold for inputs.
3. Training and serving are not skewed.
4. Models are not too stale.
5. Models are numerically stable.
6. Compu�ng performance has not regressed.
7. Predic�on quality has not regressed.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Produc�on Readiness and Technical Debt Reduc�on

69

https://research.google.com/pubs/archive/46555.pdf

Case Study: Covid-19 Detec�on
SpiroCallSpiroCall

(from S20 midterm; assume cloud or hybrid deployment)
70

https://www.youtube.com/watch?v=e62ZL3dCQWM

Breakout Groups
In the Smartphone Covid Detec�on scenario
Discuss in groups:

Back le�: data tests
Back right: model dev. tests
Front right: infrastructure tests
Front le�: monitoring tests

For 8 min, discuss some of the listed point in the context of the
Covid-detec�on scenario: what would you do?
In #lecture, tagging group members, suggest what tests to
implement

71

Dev vs. Ops

73

Common Release Problems?

74

Common Release Problems (Examples)
Missing dependencies
Different compiler versions or library versions
Different local u�li�es (e.g. unix grep vs mac grep)
Database problems
OS differences
Too slow in real se�ngs
Difficult to roll back changes
Source from many different repositories
Obscure hardware? Cloud? Enough memory?

75

Developers
Coding
Tes�ng, sta�c analysis, reviews
Con�nuous integra�on
Bug tracking
Running local tests and
scalability experiments
...

Opera�ons
Alloca�ng hardware resources
Managing OS updates
Monitoring performance
Monitoring crashes
Managing load spikes, …
Tuning database performance
Running distributed at scale
Rolling back releases
...

QA responsibili�es in both roles

76

Quality Assurance does not stop in Dev
Ensuring product builds correctly (e.g., reproducible builds)
Ensuring scalability under real-world loads
Suppor�ng environment constraints from real systems (hardware,
so�ware, OS)
Efficiency with given infrastructure
Monitoring (server, database, Dr. Watson, etc)
Bo�lenecks, crash-prone components, … (possibly thousands of
crash reports per day/minute)

77

DevOps

79

Key ideas and principles
Be�er coordinate between developers and opera�ons
(collabora�ve)
Key goal: Reduce fric�on bringing changes from development into
produc�on
Considering the en�re tool chain into produc�on (holis�c)
Documenta�on and versioning of all dependencies and
configura�ons ("configura�on as code")
Heavy automa�on, e.g., con�nuous delivery, monitoring
Small itera�ons, incremental and con�nuous releases

Buzz word!
80

81

Common Prac�ces
All configura�ons in version control

Test and deploy in containers

Automated tes�ng, tes�ng, tes�ng, ...

Monitoring, orchestra�on, and automated ac�ons in prac�ce

Microservice architectures

Release frequently

82

Heavy tooling and automa�on

83

Heavy tooling and automa�on -- Examples
Infrastructure as code — Ansible, Terraform, Puppet, Chef
CI/CD — Jenkins, TeamCity, GitLab, Shippable, Bamboo, Azure
DevOps
Test automa�on — Selenium, Cucumber, Apache JMeter
Containeriza�on — Docker, Rocket, Unik
Orchestra�on — Kubernetes, Swarm, Mesos
So�ware deployment — Elas�c Beanstalk, Octopus, Vamp
Measurement — Datadog, DynaTrace, Kibana, NewRelic,
ServiceNow

84

Con�nuous Delivery

86

Manual Release Pipelines

Source: h�ps://www.slideshare.net/jmcgarr/con�nuous-delivery-at-ne�lix-and-beyond
87

https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-beyond

Con�nuous Integr.
Automate tests a�er commit
Independent test
infrastructure

Con�nuous Delivery
Full automa�on from commit
to deployable container
Heavy focus on tes�ng,
reproducibility and rapid
feedback, creates transparency

Con�nuous
Deployment

Full automa�on from commit
to deployment
Empower developers, quick to
produc�on
Encourage experimenta�on
and fast incremental changes
Commonly integrated with
monitoring and canary releases

88

Automate Everything

89

Example: Facebook Tests for Mobile Apps
Unit tests (white box)
Sta�c analysis (null pointer warnings, memory leaks, ...)
Build tests (compila�on succeeds)
Snapshot tests (screenshot comparison, pixel by pixel)
Integra�on tests (black box, in simulators)
Performance tests (resource usage)
Capacity and conformance tests (custom)

Further readings: Rossi, Chuck, Elisa Shibley, Shi Su, Kent Beck, Tony Savor, and Michael Stumm.
. In Proceedings of the 2016

24th ACM SIGSOFT Interna�onal Symposium on Founda�ons of So�ware Engineering, pp. 12-23.
ACM, 2016.

Con�nuous deployment of mobile so�ware at facebook (showcase)

90

https://research.fb.com/wp-content/uploads/2017/02/fse-rossi.pdf

Release Challenges for Mobile Apps
Large downloads
Download �me at user discre�on
Different versions in produc�on
Pull support for old releases?

Server side releases silent and quick, consistent

-> App as container, most content + layout from server

91

Real-world pipelines are complex

92

file:///home/runner/work/seai/seai/lectures/_static/11_infrastructurequality/facebookpipeline.png

Containers and
Configura�on Management

94

Containers
Lightweight virtual machine
Contains en�re runnable
so�ware, incl. all dependencies
and configura�ons
Used in development and
produc�on
Sub-second launch �me
Explicit control over shared
disks and network connec�ons

95

Docker Example

Source:

FROM ubuntu:latest
MAINTAINER ...
RUN apt-get update -y
RUN apt-get install -y python-pip python-dev build-essential
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
ENTRYPOINT ["python"]
CMD ["app.py"]

h�p://containertutorials.com/docker-compose/flask-simple-app.html
96

http://containertutorials.com/docker-compose/flask-simple-app.html

Common configura�on management
ques�ons
What runs where?

How are machines connected?

What (environment) parameters does so�ware X require?

How to update dependency X everywhere?

How to scale service X?

97

Ansible Examples
So�ware provisioning, configura�on mgmt., and deployment tool
Apply scripts to many servers

[webservers]
web1.company.org
web2.company.org
web3.company.org

[dbservers]
db1.company.org
db2.company.org

[replication_servers]
...

This role deploys the mongod processe
- name: create data directory for mongo
 file: path={{ mongodb_datadir_prefix
 delegate_to: '{{ item }}'
 with_items: groups.replication_server

- name: create log directory for mongod
 file: path=/var/log/mongo state=direc

- name: Create the mongodb startup file
 template: src=mongod.j2 dest=/etc/ini

98

Puppet Example
Declara�ve specifica�on, can be applied to many machines

$doc_root = "/var/www/example"

exec { 'apt-get update':
 command => '/usr/bin/apt-get update'
}

package { 'apache2':
 ensure => "installed",
 require => Exec['apt-get update']
}

99

source:

Speaker notes

https://www.digitalocean.com/community/tutorials/configuration-management-101-writing-puppet-manifests

https://www.digitalocean.com/community/tutorials/configuration-management-101-writing-puppet-manifests

Container Orchestra�on with Kubernetes
Manages which container to deploy to which machine

Launches and kills containers depending on load

Manage updates and rou�ng

Automated restart, replacement, replica�on, scaling

Kuberne�s master controls many nodes

Substan�al complexity and learning curve

100

CC BY-SA 4.0 Khtan66
101

https://en.wikipedia.org/wiki/Kubernetes#/media/File:Kubernetes.png

Monitoring
Monitor server health
Monitor service health
Monitor telemetry (see past lecture)
Collect and analyze measures or log files
Dashboards and triggering automated decisions

Many tools, e.g., Grafana as dashboard, Prometheus for metrics,
Loki + Elas�cSearch for logs
Push and pull models

102

103

h�ps://ml-ops.org/
105

https://ml-ops.org/

On Terminology
Many vague buzzwords, o�en not clearly defined
MLOps: Collabora�on and communica�on between data scien�sts
and operators, e.g.,

Automate model deployment
Model training and versioning infrastructure
Model deployment and monitoring

AIOps: Using AI/ML to make opera�ons decision, e.g. in a data
center
DataOps: Data analy�cs, o�en business se�ng and repor�ng

Infrastructure to collect data (ETL) and support repor�ng
Combines agile, DevOps, Lean Manufacturing ideas

106

MLOps Overview
Integrate ML ar�facts into so�ware release process, unify process
(i.e., DevOps extension)

Automated data and model valida�on (con�nuous deployment)

Con�nuous deployment for ML models: from experimen�ng in
notebooks to quick feedback in produc�on

Versioning of models and datasets (more later)

Monitoring in produc�on (discussed earlier)

Further reading: MLOps principles
107

https://ml-ops.org/content/mlops-principles.html

Tooling Landscape LF AI

108

MLOps Tools -- Examples
Model versioning and metadata: MLFlow, Neptune, ModelDB,
WandB, ...
Model monitoring: Fiddler, Hydrosphere
Data pipeline automa�on and workflows: DVC, Kubeflow, Airflow
Model packaging and deployment: BentoML, Cortex
Distributed learning and deployment: Dask, Ray, ...
Feature store: Feast, Tecton
Integrated pla�orms: Sagemaker, Valohai, ...
Data valida�on: Cerberus, Great Expecta�ons, ...

Long list: h�ps://github.com/kelvins/awesome-mlops

109

https://github.com/kelvins/awesome-mlops

Summary
Beyond model and data quality: Quality of the infrastructure
ma�ers, danger of silent mistakes
Automate pipelines to foster evolu�on and experimenta�on
Many SE techniques for test automa�on, tes�ng robustness, test
adequacy, tes�ng in produc�on useful for infrastructure quality
DevOps: Development vs Opera�ons challenges

Automate everything: deployment, configura�on, tes�ng
Telemetry and monitoring are key

MLOps: Automa�on around ML pipelines, incl. training, evalua�on,
versioning, and deployment

111

Further Readings
� O'Leary, Ka�e, and Makoto Uchida. "

." Proc. Third Conference on Machine Learning and Systems (MLSys)
(2020).
� Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for
ML Produc�on Readiness and Technical Debt Reduc�on. Proceedings of IEEE Big Data (2017)
📰 Zinkevich, Mar�n. . Google Blog
Post, 2017
� Serban, Alex, Koen van der Blom, Holger Hoos, and Joost Visser. "

." In Proc. ACM/IEEE Interna�onal
Symposium on Empirical So�ware Engineering and Measurement (2020).
📰 Larysa Visengeriyeva. , InnoQ 2020

Common problems with Crea�ng Machine Learning
Pipelines from Exis�ng Code

Rules of Machine Learning: Best Prac�ces for ML Engineering

Adop�on and Effects of
So�ware Engineering Best Prac�ces in Machine Learning

Machine Learning Opera�ons - A Reading List

112

https://research.google/pubs/pub48984.pdf
https://developers.google.com/machine-learning/guides/rules-of-ml/
https://arxiv.org/pdf/2007.14130
https://ml-ops.org/content/references.html

