

Process...

Fundamentals of Engineering Al-Enabled Systems

Holistic system view: Al and non-Al components, pipelines, stakeholders, environment interactions, feedback loops

Requirements:

System and model goals
User requirements
Environment assumptions
Quality beyond accuracy
Measurement

Risk analysis

Planning for mistakes

Architecture + design:
Modeling tradeoffs
Deployment architecture
Data science pipelines
Telemetry, monitoring
Anticipating evolution
Big data processing
Human-Al design

Quality assurance:
Model testing

Data quality

QA automation
Testing in production
Infrastructure quality
Debugging

Operations:
Continuous deployment
Contin. experimentation
Configuration mgmt.
Monitoring

Versioning

Big data

DevOps, MLOps

Teams and process: Data science vs software eng. workflows, interdisciplinary teams, collaboration points, technical debt

Responsible Al Engineering

Provenance, Safety
versioning,
reproducibility

Security and
privacy

Fairness Interpretability
and explainability and trust

Transparency

Ethics, governance, regulation, compliance, organizational culture

Readings

Required Reading:

o Sculley, David, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and
Dan Dennison. "Hidden technical debt in machine learning systems." In
Advances in neural information processing systems, pp. 2503-2511. 2015.

Suggested Readings:

o Fowler and Highsmith. The Agile Manifesto

o Steve McConnell. Software project survival guide. Chapter 3

o Kruchten, Philippe, Robert L. Nord, and Ipek Ozkaya. "Technical debt: From
metaphor to theory and practice." IEEE Software 29, no. 6 (2012): 18-21.

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://agilemanifesto.org/
https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_58818.pdf

Learning Goals

« Overview of common data science workflows (e.g., CRISP-DM)
= Importance of iteration and experimentation
= Role of computational notebooks in supporting data science workflows
o Overview of software engineering processes and lifecycles: costs and benefits
of process, common process models, role of iteration and experimentation
o Contrasting data science and software engineering processes, goals and
conflicts
o Integrating data science and software engineering workflows in process model
for engineering Al-enabled systems with ML and nhon-ML components;
contrasting different kinds of Al-enabled systems with data science trajectories
o Overview of technical debt as metaphor for process management; common
sources of technical debt in Al-enabled systems

Case Study: Real-Estate Website

Buy Rent Sell Home Loans Agentfinder ? lelow Manage Rentals Advertise Help Signin

-
'.
-
-
—
e
—
e

a,".
7i
_’g
—T
f =
=l =
— —!
== =

—

/5
i .
' 8 »
| 1 &
"‘

ML Component: Predicting Real Estate
Value

Given a large database of house sales and statistical/demographic
data from public records, predict the sales price of a house.

f(size, rooms, tax,neighborhood, . ..) — price

Data Science: Iteration and
Exploration

What's your process?

Data Science is lterative and Exploratory

; Acquire data_: Analysis

: \ " Execute .
Reformat and /_—> o

- : scripts |
~ clean data \i Edit analysis 3 E=
. | scripts)
Preparation /’ | | e
e (‘ | Inspect | ./
Explore : _ outputs
_alternatives | Debug e/
K / Dissemination
| Make comparisons Write reports |
Takenotes ||, | Deploy online |
Hold meetings J _Archive experiment |
Reflection Share experiment]

= Source: Guo. "Data Science Workflow: Overview and Challenges." Blog@CACM, Oct 2013

https://cacm.acm.org/blogs/blog-cacm/169199-data-science-workflow-overview-and-challenges/fulltext

Data Science is lterative and Exploratory

Martinez-Plumed et al. "CRISP-DM Twenty Years Later: From Data Mining Processes to Data
— Science Trajectories." IEEE Transactions on Knowledge and Data Engineering (2019).

https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf

_ Microsoft Azure Team,

Data Science is lterative and Exploratory

Data Science Lifecycle

Transform, Binning Feature

Temporal, Text, Image Engi f
ngineerin
Feature Selection gineering

Algorithms, Ensemble
Parameter Tuning Model

Retraining Training

Model management

Cross Validation Model
Model Reporting

/B Testing Evaluation

Model
Store

Web
Services

Intelligent
Applications

Business
Understanding

On-Premises vs Cloud

Data Source Database vs Files

Pipeli Streaming vs Batch
e Low vs High Frequency
Acquisition &
Understanding . On-premises vs Cloud
[H\I{gelalna (ol Database vs Data Lake vs ..
Small vs Medium vs Big Data

WTEDAINTEMI Structured vs Unstructured
(SUeI[o] = 1d[e] kW Data Validation and Cleanup
Cleaning Visualization

Deployment Customer
Acceptance

Scoring,
Performance

monitoring, etc.

"What is the Team Data Science Process?" Microsoft Doc., Jan 2020

https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/media/overview/tdsp-lifecycle2.png
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview

Data Science is lterative and Exploratory

First Second Final
2 Hours 2 Hours Accuracy
TAPI1 — 84.7%
TAP2 X X 75.3%
S —

TAP3 78.3%
TAP4 "1 82.9%
TAP5 a 84.7%
TAP6 — — 78.0%
TAP7 — 56.9%
TAPS 22.8%
TAP9 — | 78.8%
TAP10 84.4%

Source: Patel, Kayur, James Fogarty, James A. Landay, and Beverly Harrison. "Investigating
— statistical machine learning as a tool for software development." In Proc. CHI, 2008.

file:///home/runner/work/seai/seai/lectures/_static/14_process/accuracy-improvements.png
http://www.kayur.org/papers/chi2008.pdf

Speaker notes

This figure shows the result from a controlled experiment in which participants had 2 sessions of 2h each to build a model. Whenever the participants evaluated a model in
the process, the accuracy is recorded. These plots show the accuracy improvements over time, showing how data scientists make incremental improvements through

frequent iteration.

Data Science is lterative and Exploratory

Science mindset: start with rough goal, no clear specification, unclear
whether possible

Heuristics and experience to guide the process
Try and error, refine iteratively, hypothesis testing

Go back to data collection and cleaning if needed, revise goals

Share Experience?

Different Trajectories

™ g
Business 4 Data
Understanding [Understanding

Data
[Deployment]

- [Preparation]
v\ i

y
- [Modelling]

Evaluation JJ

Martinez-Plumed et al. "CRISP-DM Twenty Years Later: From Data Mining Processes to Data
— Science Trajectories." IEEE Transactions on Knowledge and Data Engineering (2019).

https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf

Different Trajectories

0 Goal 1 Data Value | 2 Data 3 Modell 4 Product |5
Exploration Exploration Preparation oaetling Exploration
~\
0 Business 1 Data
Understanding Understanding
S

"

Data
Preparation

From: Martinez-Plumed et al. "CRISP-DM Twenty Years Later: From Data Mining Processes to Data
— Science Trajectories." IEEE Transactions on Knowledge and Data Engineering (2019).

https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf

Speaker notes

« A product to recommend trips connecting tourist attractions in a town may be based on location tracking data collected by navigation and mapping apps. To build such a
project, one might start with a concrete goal in mind and explore whether enough user location history data is available or can be acquired. One would then go through
traditional data preparation and modeling stages before exploring how to best present the results to users.

« An insurance company tries to improve their model to score the risk of drivers based on their behavior and sensors in their cars. Here an existing product is to be refined
and a better understanding of the business case is needed before diving into the data exploration and modeling. The team might spend significant time in exploring new
data sources that may provide new insights and may debate the cost and benefits of this data or data gathering strategy (e.g., installing sensors in customer cars).

« A credit card company may want to sell data about what kind of products different people (nationalities) tend to buy at different times and days in different locations to
other companies (retailers, restaurants). They may explore existing data without yet knowing what kind of data may be of interest to what kind of customers. They may
actively search for interesting narratives in the data, posing questions such as “Ever wondered when the French buy their food?” or “Which places the Germans flock to
on their holidays?” in promotional material.

Computational Notebooks

e Origins in "literate programming’,
interleaving text and code, treating
programs as literature (Knuth'84)

e First notebook in Wolfram
Mathematica 1.0 in 1988

o Document with text and code cells,
showing execution results under
cells

o Code of cells is executed, per cell, in
a kernel

« Many notebook implementations
and supported languages, Python +
Jupyter currently most popular

Speaker notes

« See also https://en.wikipedia.org/wiki/Literate_programming
« Demo with public notebook, e.g., https://colab.research.google.com/notebooks/mlcc/intro_to pandas.ipynb

https://en.wikipedia.org/wiki/Literate_programming
https://colab.research.google.com/notebooks/mlcc/intro_to_pandas.ipynb

Notebooks Support Iteration and
Exploration

Quick feedback, similar to REPL

Visual feedback including figures and tables
Incremental computation: reexecuting individual cells
Quick and easy: copy paste, no abstraction needed

Easy to share: document includes text, code, and results

Brief Discussion: Notebook Limitations
and Drawbacks?

Software Engineering
Process

Innovative vs Routine Projects

Like data science tasks, most software projects are innovative

o Google, Amazon, Ebay, Netflix
« Vehicles and robotics
o Language processing, Graphics, Al

Routine (now, not 20 years ago)

o E-commerce websites?
« Product recommendation? Voice recognition?
o Routine gets automated -> innovation cycle

A Simple Process

1. Discuss the software that needs to be written
2. Write some code

3. Test the code to identify the defects

4. Debug to find causes of defects

5. Fix the defects

6. If not done, return to step 1

Software Process

“The set of activities and associated results that produce a software
product”

Examples?

Speaker notes

Writing down all requirements Require approval for all changes to requirements Use version control for all changes Track all reported bugs Review requirements and code
Break down development into smaller tasks and schedule and monitor them Planning and conducting quality assurance Have daily status meetings Use Docker containers

to push code between developers and operation

100%

Percent
of
Effort

0%

Project
beginning

Project
end

Time

Speaker notes

Visualization following McConnell, Steve. Software project survival guide. Pearson Education, 1998.

100%

Percent
of
Effort

0%

Trashing / Rework

Productive Coding

Project
beginning

Project
end

Time

Speaker notes

Idea: spent most of the time on coding, accept a little rework

100%

Percent
of
Effort

0%

Trashing / Rework

Productive Coding

Process: Cost and Time estimates, Writing Requirements, Design,

Change Management, Quality Assurance Plan,
Developmentand Integration Plan

Project Time Project
beginning end

Speaker notes

negative view of process. pure overhead, reduces productive work, limits creativity

100%

Percent
of
Effort

0%

Project
beginning

Trashing / Rework

Productive Coding

Time

Process

Project

end

Speaker notes

Real experience if little attention is payed to process: increasingly complicated, increasing rework; attempts to rescue by introducing process

Example of Process Problems?

Speaker notes

Collect examples of what could go wrong:

Change Control: Mid-project informal agreement to changes suggested by customer or manager. Project scope expands 25-50% Quality Assurance: Late detection of
requirements and design issues. Test-debug-reimplement cycle limits development of new features. Release with known defects. Defect Tracking: Bug reports collected
informally, forgotten System Integration: Integration of independently developed components at the very end of the project. Interfaces out of sync. Source Code Control:
Accidentally overwritten changes, lost work. Scheduling: When project is behind, developers are asked weekly for new estimates.

Typical Process Steps (hot necessarily in

this order)

o Understand customers, identify what to build, by when, budget
o |dentify relevant qualities, plan/design system accordingly

o Test, deploy, maintain, evolve

 Plan, staff, workaround

Survival Mode

Missed deadlines -> "solo development mode" to meet own deadlines

lgnore integration work

Stop interacting with testers, technical writers, managers, ...

McConnell, Steve. Software project survival guide. Pearson Education, 1998.

Hypothesis: Process increases flexibility and efficiency + Upfront
investment for later greater returns

Speaker notes

ideal setting of little process investment upfront

F
Cost to

Correct

Phase That a
Defect Is Created

Fequirements

Architecture

Detailed design

\ N

Requirements Architecture Detailed Construction Maintenance
design

Construction l

Phase That a Defect [s Corrected

Coprmight 19958 Steven C. WeConnell. Reprinted wath pe russion
= from Soffware Project Survival Guide (Whcrosoft Press, 1992).

Speaker notes

Empirically well established rule: Bugs are increasingly expensive to fix the larger the distance between the phase where they are created vs where they are corrected.

Version £4 15 June 2018

w—— - s mamconiead

Following th ¢ sonitart statutory requirsment e ot
+— Materiel Sclution Analysis Phase —

] Phase - —= Operations & Support Phase
capeh Ay v . g o -m
- E @ e Teieing Boreapee S - System i il Fate ProUEtanIDApIOYMaR Ereio Fucior s e P
Tonpi gt b \ " B Frat riat i E Lifn Cycle Su a Disposal
Joint i : e
Capabilities [mu=xie]
Integration &
Development
System
{need-driven)
Oversight
&
Review P ey
et =g
e
=
Contracting
Major
Products
Logistics!
Sustainment T
Post-COR A i
Acquisition
System
{event-driven)
Technical
Systoms Engineoring
Tomt wnd Evaluation
Supporiabiiny
e
o e e
]
e
Financial s e
Management T S e e
________________________________ S el e
Flanm g, |——[PomBudgei submit |
Programming, .] L
Budgeting
& Execution [
Process e san | (e
(f 7 AR
(
calendar-driven) [et Sy Simiegy] 1
[T ———

Speaker notes

Complicated processes like these are often what people associate with "process"”. Software process is needed, but does not need to be complicated.

Software Process Models

Ad-hoc Processes

1. Discuss the software that needs to be written
2. Write some code

3. Test the code to identify the defects

4. Debug to find causes of defects

5. Fix the defects

6. If not done, return to step 1

Waterfall Model

Requirements *
A .
c] Architecture /
Design *
A
e Implementation —¢
A
IR Testing
A . |
] Maintenance /
Operations

_ taming chaos, understand req., plan before coding, remember testing

Speaker notes

Although dated, the key idea is still essential -- think and plan before implementing. Not all requirements and design can be made upfront, but planning is usually helpful.

Risk First: Spiral Model

1.Determine
objectives

Review

A Cumulative cost

—

Requirements

Progress 2. Identify and
R resolve risks

4. Plan the
next iteration

incremental prototypes, starting with most risky components

Release

Operational
an Prototype 1\ Prototype 2\ prototype
o o
jon requirements
e 'S rai

Detailed
design

& Validation

Implementation

3. Development

and Test

Constant iteration: Agile

24 h

30 days

Il:]
g RZ7Z .

Working increment
of the software

Product Backlog Sprint Backlog Sprint

working with customers, constant replanning

(Image CC BY-SA 4.0, Lakeworks)

Selecting Process Models

Individually, vote in slack: [1] Ad-hoc [2] Waterfall [3] Spiral [4] Agile

and write a short justification in #lecture

Data Science vs Software
Engineering

Discussion: Iteration in Notebook vs Agile?

(CC BY-SA 4.0, Lakeworks)

Speaker notes

There is similarity in that there is an iterative process, but the idea is different and the process model seems mostly orthogonal to iteration in data science. The spiral model
prioritizes risk, especially when it is not clear whether a model is feasible. One can do similar things in model development, seeing whether it is feasible with data at hand at
all and build an early prototype, but it is not clear that an initial okay model can be improved incrementally into a great one later. Agile can work with vague and changing
requirements, but that again seems to be a rather orthogonal concern. Requirements on the product are not so much unclear or changing (the goal is often clear), but it's
not clear whether and how a model can solve it.

Poor Software Engineering Practices in
Notebooks?

o Little abstraction

o Global state

o No testing

« Heavy copy and paste
o Little documentation

« Poor version control

o Out of order execution

« Poor development features (vs
IDE)

Understanding Data Scientist Workflows

Instead of blindly recommended "SE Best Practices” understand
context

Documentation and testing not a priority in exploratory phase

Help with transitioning into practice

e From notebooks to pipelines
e Support maintenance and iteration once deployed
« Provide infrastructure and tools

Data
Sclentists

Software
Engineers

Data Science Practices by Software Eng.

o Many software engineers get involved in data science without explicit training

o Copying from public examples, little reading of documentation

Lack of data visualization/exploration/understanding, no focus on data quality
Strong preference for code editors, non-GUI tools

Improve model by adding more data or changing models, rarely feature
engineering or debugging

Lack of awareness about overfitting/bias problems, single focus on accuracy, no
monitoring

More system thinking about the product and its needs

Yang, Qian, Jina Suh, Nan-Chen Chen, and Gonzalo Ramos. "Grounding interactive machine learning
tool design in how non-experts actually build models." In Proceedings of the 2018 Designing
— Interactive Systems Conference, pp. 573-584. 2018.

http://www.audentia-gestion.fr/MICROSOFT/Machine_Teaching_DIS_18.pdf

Integrated Process for Al-
Enabled Systems

T~ T~
SR B

Time
Software system Decomposition Component Integration Software system
specification specification,
search, modification,
creation

Figure from Dogru, Ali H., and Murat M. Tanik. “A process model for component-oriented software
— engineering.” IEEE Software 20, no. 2 (2003): 34-41.

Initial
Requirements

Planning /
High-Level
Design

Low-Level
Design
Implemen-
tation
Quality
Assurance
Deployment

Initial
Requirements

Model

requirements

Planning /
High-Level
Design

| ‘l Data collection, clean.

{l Data labeling

{I Feature engineering

4

Model training

{l Model evaluation

{| Model deployment

‘l Model monitoring

Deployment

System: Transcription service

End-User
User Interface

Internal

Data Labeling Tool

telemetry

User
Accounts

Audio
Upload

Feature
Server

Training
Data

scales with

data collection

Model Inference:

Speech Recognition

learns & deploys

observes

ML Pipeline

Model
Monitoring

sJobb1)

observes

Database

Cloud Processing

Logging

Monitoring

Legend: Non-ML component,

ML component, Dsystem boundary

JUBWUOJIAUT

Initial
Requirements

Model requirements

]l ‘l Initial data collection

Planning /
High-Level
Design

{l Exploration, training |‘
{I Model evaluation

‘I Pipeline component

- Monitoring componen

n

Model component

Deployment

Non-ML Component

Traditional
_ . component
Component | Design N Implementa | Quality
Requirements tion Assurance
1 1 1
7 ________ ! 7 ________ I f ________ I '
System > Planning / Integration, > ,
Requirements Architecture Quality Ass. Operations
A .: * ML Component [A : :
Data Training, .
_‘ Mode_l | Collection, | Pipeline | Quality | I
Requirements : : Assurance — [[
Cleaning, ... Automation Pipeline,
yy T yy 7y ML Monitoring and [I
|
|

*_—_—

Model Inference
Components

Process for Al-Enabled Systems

o Integrate Software Engineering and Data Science processes

Establish system-level requirements (e.g., user needs, safety, fairness)

Inform data science modeling with system requirements (e.g., privacy, fairness)
Try risky parts first (most likely include ML components; ~spiral)

« Incrementally develop prototypes, incorporate user feedback (~agile)

o Provide flexibility to iterate and improve

« Design system with characteristics of Al component (e.g., Ul design, safeguards)
e Plan for testing throughout the process and in production

Manage project understanding both software engineering and data science
workflows

No existing "best practices" or workflow models

Trajectories

Not every project follows the same development process, e.g.

« Small ML addition: Product first, add ML feature later

o Research only: Explore feasibility before thinking about a product
« Data science first: Model as central component of potential
product, build system around it

Different focus on system requirements, qualities, and upfront
planning

Manage interdisciplinary teams and different expectations

Model first vs Product first

Non-ML Component

Traditional
_ . component
Component > Design i Implementa | Quality
Requirements tion Assurance
A I A T A T
| e e = I e e e e = 1 1 '
System > Planning / Integration, > ,
Requirements Architecture Quality Ass. Operations
A .: * ML Component [A : :
Data Training, .
=" |I\?/lc(a)dl‘j}ilrements ™| Collection, >| Pipeline] 2ss,alljlgnce ; .
g Cleaning, ... Automation Pipeline, I I
yy I 7y 7y ML Monitoring and I I
I
I

*_—_—

Model Inference
Components

Buy Rent Sell Home Loans Agentfinder 6 lelow Manage Rentals Advertise Help Signin

Relma 1ne home

find a place you'll love.

3
b

)
LTI

A

Enter an address, neighborhood, city, or ZIP c... Q

Technical debt

TECH DEBT

THIS DOESN'T
LOOK. GOOD

WE ARE PROGRESSING
S0 FAST TOGETHER

MONKEYUSER .CoM

https://www.monkeyuser.com/2018/tech-debt/

Technical Debt Metaphor

Analogy to financial debt

« Have a benefit now (e.g., progress quickly, release now)

« accepting later cost (loss of productivity, e.g., higher
maintenance/operating cost, rework)

o debt accumulates and can suffocate project

ldeally a deliberate decision (short term tactical or long term
strategic)

|deally track debt and plan for paying it down

Examples?

Reckless Prudent

“We don’t have time “We must ship now
for design™ and deal with
consequences”
Deliberate
Inadvertent
. , - “Now we know how we
‘What's Layering: should have done it”

= Source: Martin Fowler 2009, https:/martinfowler.com/bliki/TechnicalDebtQuadrant.html

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

Breakout: Technical Debt from ML

As a group in #lecture, tagging members: Post two plausible
examples technical debt in housing price prediction system:

1. Deliberate, prudent:
2. Reckless, inadvertent:

Technical Debt through Notebooks?

Jupyter Notebooks are a gift from God to those who work with data. They
allow us to do quick experiments with Julia, Python, R, and more -- John
Paul Ada

https://towardsdatascience.com/no-hassle-machine-learning-experiments-with-azure-notebooks-e1a22e8782c3

Speaker notes

Discuss benefits and drawbacks of Jupyter style notebooks

ML and Technical Debt

Often reckless and inadvertent in inexperienced teams
ML can seem like an easy addition, but it may cause long-term costs
Needs to be maintained, evolved, and debugged

Goals may change, environment may change, some changes are
subtle

Example problems: ML and Technical Debt

« Systems and models are tangled and changing one has cascading
effects on the other

o Untested, brittle infrastructure; manual deployment

o Unstable data dependencies, replication crisis

« Data drift and feedback loops

o Magic constants and dead experimental code paths

Further reading: Sculley, David, et al. Hidden technical debt in machine learning systems. Advances
_ in Neural Information Processing Systems. 2015.

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

Controlling Technical Debt from ML
Components

Controlling Technical Debt from ML
Components

o Avoid Al when not needed

o Understand and document requirements, design for mistakes

« Build reliable and maintainable pipelines, infrastructure, good engineering
practices

o Test infrastructure, system testing, testing and monitoring in production

o Test and monitor data quality

o Understand and model data dependencies, feedback loops, ...

Document design intent and system architecture

Strong interdisciplinary teams with joint responsibilities

Document and track technical debt

Buy Rent Sell Home Loans Agentfinder 6 lelow Manage Rentals Advertise Help Signin

Relma 1ne home

find a place you'll love.

3
b

)
LTI

A

Enter an address, neighborhood, city, or ZIP c... Q

Summary

Data scientists and software engineers follow different processes
ML projects need to consider process needs of both

lteration and upfront planning are both important, process models
codify good practices

Deliberate technical debt can be good, too much debt can suffocate a
project

Easy to amount (reckless) technical debt with machine learning

Further Reading

o Sculley, David, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,

Dietmar Ebner,
Dan Dennison.

Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and
"Hidden technical debt in machine learning systems." In

Advances in neural information processing systems, pp. 2503-2511. 2015.
e Studer, Stefan, Thanh Binh Bui, Christian Drescher, Alexander Hanuschkin,
Ludwig Winkler, Steven Peters, and Klaus-Robert Mueller. "Towards CRISP-ML

(Q): A Machine

Learning Process Model with Quality Assurance Methodology."

arXiv preprint arXiv:2003.05155 (2020).

« Martinez-Plumed, Fernando, et al. "CRISP-DM Twenty Years Later: From Data
Mining Processes to Data Science Trajectories." IEEE Transactions on
Knowledge and Data Engineering (2019).

e | Kaestner, C
components. B

hristian. On the process for building software with ML

og Post, 2020

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://arxiv.org/abs/2003.05155
https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf
https://ckaestne.medium.com/on-the-process-for-building-software-with-ml-components-c54bdb86db24

Further Reading 2

o Patel, Kayur, James Fogarty, James A. Landay, and Beverly Harrison.
"Investigating statistical machine learning as a tool for software development.”
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 667-676. 2008.

e Yang, Qian, Jina Suh, Nan-Chen Chen, and Gonzalo Ramos. "Grounding
interactive machine learning tool design in how non-experts actually build

models." In Proceedings of the 2018 Designing Interactive Systems Conference, pp.

573-584. 2018.
e | Fowler and Highsmith. The Agile Manifesto
Steve McConnell. Software project survival guide. Chapter 3
Pfleeger and Atlee. Software Engineering: Theory and Practice. Chapter 2
Kruchten, Philippe, Robert L. Nord, and lpek Ozkaya. "Technical debt: From
metaphor to theory and practice." IEEE Software 29, no. 6 (2012): 18-21.

http://www.kayur.org/papers/chi2008.pdf
http://www.audentia-gestion.fr/MICROSOFT/Machine_Teaching_DIS_18.pdf
http://agilemanifesto.org/
https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_58818.pdf

