
Machine Learning in Produc�onMachine Learning in Produc�on

Process and Technical DebtProcess and Technical Debt
1





Process...

3




Readings
Required Reading:

Sculley, David, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and
Dan Dennison. " ." In
Advances in neural informa�on processing systems, pp. 2503-2511. 2015.

Suggested Readings:
Fowler and Highsmith. 
Steve McConnell. So�ware project survival guide. Chapter 3
Kruchten, Philippe, Robert L. Nord, and Ipek Ozkaya. "

." IEEE So�ware 29, no. 6 (2012): 18-21.

Hidden technical debt in machine learning systems

The Agile Manifesto

Technical debt: From
metaphor to theory and prac�ce

4


http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://agilemanifesto.org/
https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_58818.pdf


Learning Goals
Overview of common data science workflows (e.g., CRISP-DM)

Importance of itera�on and experimenta�on
Role of computa�onal notebooks in suppor�ng data science workflows

Overview of so�ware engineering processes and lifecycles: costs and benefits
of process, common process models, role of itera�on and experimenta�on
Contras�ng data science and so�ware engineering processes, goals and
conflicts
Integra�ng data science and so�ware engineering workflows in process model
for engineering AI-enabled systems with ML and non-ML components;
contras�ng different kinds of AI-enabled systems with data science trajectories
Overview of technical debt as metaphor for process management; common
sources of technical debt in AI-enabled systems

5




Case Study: Real-Estate Website

7




ML Component: Predic�ng Real Estate
Value
Given a large database of house sales and sta�s�cal/demographic
data from public records, predict the sales price of a house.

f(size, rooms, tax,neighborhood, . . . ) → price

8




Data Science: Itera�on and
Explora�on

10




What's your process?

11




Data Science is Itera�ve and Exploratory

Source: Guo. " ." Blog@CACM, Oct 2013Data Science Workflow: Overview and Challenges
12



https://cacm.acm.org/blogs/blog-cacm/169199-data-science-workflow-overview-and-challenges/fulltext


Data Science is Itera�ve and Exploratory

Mar�nez-Plumed et al. "
." IEEE Transac�ons on Knowledge and Data Engineering (2019).

CRISP-DM Twenty Years Later: From Data Mining Processes to Data
Science Trajectories

13


https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf


Data Science is Itera�ve and Exploratory

Microso� Azure Team, " " Microso� Doc., Jan 2020What is the Team Data Science Process?
14



https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/media/overview/tdsp-lifecycle2.png
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview


Data Science is Itera�ve and Exploratory

Source: Patel, Kayur, James Fogarty, James A. Landay, and Beverly Harrison. "
." In Proc. CHI, 2008.

Inves�ga�ng
sta�s�cal machine learning as a tool for so�ware development

15


file:///home/runner/work/seai/seai/lectures/_static/14_process/accuracy-improvements.png
http://www.kayur.org/papers/chi2008.pdf




This figure shows the result from a controlled experiment in which participants had 2 sessions of 2h each to build a model. Whenever the participants evaluated a model in
the process, the accuracy is recorded. These plots show the accuracy improvements over time, showing how data scientists make incremental improvements through
frequent iteration.

Speaker notes



Data Science is Itera�ve and Exploratory
Science mindset: start with rough goal, no clear specifica�on, unclear
whether possible

Heuris�cs and experience to guide the process

Try and error, refine itera�vely, hypothesis tes�ng

Go back to data collec�on and cleaning if needed, revise goals

16




Share Experience?

17




Different Trajectories

Mar�nez-Plumed et al. "
." IEEE Transac�ons on Knowledge and Data Engineering (2019).

CRISP-DM Twenty Years Later: From Data Mining Processes to Data
Science Trajectories

18


https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf


Different Trajectories

From: Mar�nez-Plumed et al. "
." IEEE Transac�ons on Knowledge and Data Engineering (2019).

CRISP-DM Twenty Years Later: From Data Mining Processes to Data
Science Trajectories

19


https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf




A product to recommend trips connecting tourist attractions in a town may be based on location tracking data collected by navigation and mapping apps. To build such a
project, one might start with a concrete goal in mind and explore whether enough user location history data is available or can be acquired. One would then go through
traditional data preparation and modeling stages before exploring how to best present the results to users.
An insurance company tries to improve their model to score the risk of drivers based on their behavior and sensors in their cars. Here an existing product is to be refined
and a better understanding of the business case is needed before diving into the data exploration and modeling. The team might spend significant time in exploring new
data sources that may provide new insights and may debate the cost and benefits of this data or data gathering strategy (e.g., installing sensors in customer cars).
A credit card company may want to sell data about what kind of products different people (nationalities) tend to buy at different times and days in different locations to
other companies (retailers, restaurants). They may explore existing data without yet knowing what kind of data may be of interest to what kind of customers. They may
actively search for interesting narratives in the data, posing questions such as “Ever wondered when the French buy their food?” or “Which places the Germans flock to
on their holidays?” in promotional material.

Speaker notes



Computa�onal Notebooks
Origins in "literate programming",
interleaving text and code, trea�ng
programs as literature (Knuth'84)
First notebook in Wolfram
Mathema�ca 1.0 in 1988
Document with text and code cells,
showing execu�on results under
cells
Code of cells is executed, per cell, in
a kernel
Many notebook implementa�ons
and supported languages, Python +
Jupyter currently most popular

20






See also 
Demo with public notebook, e.g., 

Speaker notes

https://en.wikipedia.org/wiki/Literate_programming
https://colab.research.google.com/notebooks/mlcc/intro_to_pandas.ipynb

https://en.wikipedia.org/wiki/Literate_programming
https://colab.research.google.com/notebooks/mlcc/intro_to_pandas.ipynb


Notebooks Support Itera�on and
Explora�on
Quick feedback, similar to REPL

Visual feedback including figures and tables

Incremental computa�on: reexecu�ng individual cells

Quick and easy: copy paste, no abstrac�on needed

Easy to share: document includes text, code, and results

21




Brief Discussion: Notebook Limita�ons
and Drawbacks?

22




So�ware Engineering
Process

24




Innova�ve vs Rou�ne Projects
Like data science tasks, most so�ware projects are innova�ve

Google, Amazon, Ebay, Ne�lix
Vehicles and robo�cs
Language processing, Graphics, AI

Rou�ne (now, not 20 years ago)
E-commerce websites?
Product recommenda�on? Voice recogni�on?
Rou�ne gets automated -> innova�on cycle

25




A Simple Process
1. Discuss the so�ware that needs to be wri�en
2. Write some code
3. Test the code to iden�fy the defects
4. Debug to find causes of defects
5. Fix the defects
6. If not done, return to step 1

26




So�ware Process

Examples?

“The set of ac�vi�es and associated results that produce a so�ware
product”

27






Writing down all requirements Require approval for all changes to requirements Use version control for all changes Track all reported bugs Review requirements and code
Break down development into smaller tasks and schedule and monitor them Planning and conducting quality assurance Have daily status meetings Use Docker containers
to push code between developers and operation

Speaker notes



28






Visualization following McConnell, Steve. Software project survival guide. Pearson Education, 1998.

Speaker notes



29






Idea: spent most of the time on coding, accept a little rework

Speaker notes



30






negative view of process. pure overhead, reduces productive work, limits creativity

Speaker notes



31






Real experience if little attention is payed to process: increasingly complicated, increasing rework; attempts to rescue by introducing process

Speaker notes



Example of Process Problems?

32






Collect examples of what could go wrong:

Change Control: Mid-project informal agreement to changes suggested by customer or manager. Project scope expands 25-50% Quality Assurance: Late detection of
requirements and design issues. Test-debug-reimplement cycle limits development of new features. Release with known defects. Defect Tracking: Bug reports collected
informally, forgotten System Integration: Integration of independently developed components at the very end of the project. Interfaces out of sync. Source Code Control:
Accidentally overwritten changes, lost work. Scheduling: When project is behind, developers are asked weekly for new estimates.

Speaker notes



Typical Process Steps (not necessarily in
this order)

Understand customers, iden�fy what to build, by when, budget
Iden�fy relevant quali�es, plan/design system accordingly
Test, deploy, maintain, evolve
Plan, staff, workaround

33




Survival Mode
Missed deadlines -> "solo development mode" to meet own deadlines

Ignore integra�on work

Stop interac�ng with testers, technical writers, managers, ...

McConnell, Steve. So�ware project survival guide. Pearson Educa�on, 1998.
34





Hypothesis: Process increases flexibility and efficiency + Upfront
investment for later greater returns

35






ideal setting of little process investment upfront

Speaker notes



36






Empirically well established rule: Bugs are increasingly expensive to fix the larger the distance between the phase where they are created vs where they are corrected.

Speaker notes



37






Complicated processes like these are often what people associate with "process". Software process is needed, but does not need to be complicated.

Speaker notes



So�ware Process Models

39




Ad-hoc Processes
1. Discuss the so�ware that needs to be wri�en
2. Write some code
3. Test the code to iden�fy the defects
4. Debug to find causes of defects
5. Fix the defects
6. If not done, return to step 1

40




Waterfall Model

taming chaos, understand req., plan before coding, remember tes�ng
41







Although dated, the key idea is still essential -- think and plan before implementing. Not all requirements and design can be made upfront, but planning is usually helpful.

Speaker notes



Risk First: Spiral Model

1.Determine
objectives

2. Identify and 
resolve risks

3. Development 
and Test

4. Plan the 
next iteration

Progress
Cumulative cost

Requirements
plan

Concept of
operation

Concept of
requirements

Prototype 1 Prototype 2
Operational
prototype

Requirements Draft
Detailed
design

Code

IntegrationIntegration

Test

Implementation

Release

Test plan Verification 
& Validation

Development
plan

Verification 
& Validation

Review

incremental prototypes, star�ng with most risky components
42





Constant itera�on: Agile

30 days

24 h

Working increment
of the software

Sprint Backlog SprintProduct Backlog

working with customers, constant replanning

(Image CC BY-SA 4.0, Lakeworks)
43





Selec�ng Process Models
Individually, vote in slack: [1] Ad-hoc [2] Waterfall [3] Spiral [4] Agile

and write a short jus�fica�on in #lecture

44




Data Science vs So�ware
Engineering

46




Discussion: Itera�on in Notebook vs Agile?

30 days

24 h

Working increment
of the software

Sprint Backlog SprintProduct Backlog

(CC BY-SA 4.0, Lakeworks)

47






There is similarity in that there is an iterative process, but the idea is different and the process model seems mostly orthogonal to iteration in data science. The spiral model
prioritizes risk, especially when it is not clear whether a model is feasible. One can do similar things in model development, seeing whether it is feasible with data at hand at
all and build an early prototype, but it is not clear that an initial okay model can be improved incrementally into a great one later. Agile can work with vague and changing
requirements, but that again seems to be a rather orthogonal concern. Requirements on the product are not so much unclear or changing (the goal is often clear), but it's
not clear whether and how a model can solve it.

Speaker notes



Poor So�ware Engineering Prac�ces in
Notebooks?

Li�le abstrac�on
Global state
No tes�ng
Heavy copy and paste
Li�le documenta�on
Poor version control
Out of order execu�on
Poor development features (vs
IDE)

48




Understanding Data Scien�st Workflows
Instead of blindly recommended "SE Best Prac�ces" understand
context

Documenta�on and tes�ng not a priority in exploratory phase

Help with transi�oning into prac�ce
From notebooks to pipelines
Support maintenance and itera�on once deployed
Provide infrastructure and tools

49




Data
Scientists

Software
Engineers

50




Data Science Prac�ces by So�ware Eng.
Many so�ware engineers get involved in data science without explicit training
Copying from public examples, li�le reading of documenta�on
Lack of data visualiza�on/explora�on/understanding, no focus on data quality
Strong preference for code editors, non-GUI tools
Improve model by adding more data or changing models, rarely feature
engineering or debugging
Lack of awareness about overfi�ng/bias problems, single focus on accuracy, no
monitoring
More system thinking about the product and its needs

Yang, Qian, Jina Suh, Nan-Chen Chen, and Gonzalo Ramos. "
." In Proceedings of the 2018 Designing

Interac�ve Systems Conference, pp. 573-584. 2018.

Grounding interac�ve machine learning
tool design in how non-experts actually build models

51


http://www.audentia-gestion.fr/MICROSOFT/Machine_Teaching_DIS_18.pdf


Integrated Process for AI-
Enabled Systems

53




Figure from Dogru, Ali H., and Murat M. Tanik. “A process model for component-oriented so�ware
engineering.” IEEE So�ware 20, no. 2 (2003): 34–41.

54




55




56




57




58




59




Process for AI-Enabled Systems
Integrate So�ware Engineering and Data Science processes
Establish system-level requirements (e.g., user needs, safety, fairness)
Inform data science modeling with system requirements (e.g., privacy, fairness)
Try risky parts first (most likely include ML components; ~spiral)
Incrementally develop prototypes, incorporate user feedback (~agile)
Provide flexibility to iterate and improve
Design system with characteris�cs of AI component (e.g., UI design, safeguards)
Plan for tes�ng throughout the process and in produc�on
Manage project understanding both so�ware engineering and data science
workflows

No exis�ng "best prac�ces" or workflow models

60




Trajectories
Not every project follows the same development process, e.g.

Small ML addi�on: Product first, add ML feature later
Research only: Explore feasibility before thinking about a product
Data science first: Model as central component of poten�al
product, build system around it

Different focus on system requirements, quali�es, and upfront
planning

Manage interdisciplinary teams and different expecta�ons

61




Model first vs Product first

62




63




Technical debt

65


https://www.monkeyuser.com/2018/tech-debt/


Technical Debt Metaphor
Analogy to financial debt

Have a benefit now (e.g., progress quickly, release now)
accep�ng later cost (loss of produc�vity, e.g., higher
maintenance/opera�ng cost, rework)
debt accumulates and can suffocate project

Ideally a deliberate decision (short term tac�cal or long term
strategic)

Ideally track debt and plan for paying it down

Examples?
66





Source: Mar�n Fowler 2009, h�ps://mar�nfowler.com/bliki/TechnicalDebtQuadrant.html
67



https://martinfowler.com/bliki/TechnicalDebtQuadrant.html


Breakout: Technical Debt from ML
As a group in #lecture, tagging members: Post two plausible
examples technical debt in housing price predic�on system:
1. Deliberate, prudent:
2. Reckless, inadvertent:

68




Technical Debt through Notebooks?
Jupyter Notebooks are a gi� from God to those who work with data. They
allow us to do quick experiments with Julia, Python, R, and more -- John
Paul Ada

69


https://towardsdatascience.com/no-hassle-machine-learning-experiments-with-azure-notebooks-e1a22e8782c3




Discuss benefits and drawbacks of Jupyter style notebooks

Speaker notes



ML and Technical Debt
O�en reckless and inadvertent in inexperienced teams

ML can seem like an easy addi�on, but it may cause long-term costs

Needs to be maintained, evolved, and debugged

Goals may change, environment may change, some changes are
subtle

70




Example problems: ML and Technical Debt
Systems and models are tangled and changing one has cascading
effects on the other
Untested, bri�le infrastructure; manual deployment
Unstable data dependencies, replica�on crisis
Data dri� and feedback loops
Magic constants and dead experimental code paths

Further reading: Sculley, David, et al. . Advances
in Neural Informa�on Processing Systems. 2015.

Hidden technical debt in machine learning systems

71


http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf


Controlling Technical Debt from ML
Components

72




Controlling Technical Debt from ML
Components

Avoid AI when not needed
Understand and document requirements, design for mistakes
Build reliable and maintainable pipelines, infrastructure, good engineering
prac�ces
Test infrastructure, system tes�ng, tes�ng and monitoring in produc�on
Test and monitor data quality
Understand and model data dependencies, feedback loops, ...
Document design intent and system architecture
Strong interdisciplinary teams with joint responsibili�es
Document and track technical debt
...

73




74




Summary
Data scien�sts and so�ware engineers follow different processes

ML projects need to consider process needs of both

Itera�on and upfront planning are both important, process models
codify good prac�ces

Deliberate technical debt can be good, too much debt can suffocate a
project

Easy to amount (reckless) technical debt with machine learning

75




Further Reading
� Sculley, David, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and
Dan Dennison. " ." In
Advances in neural informa�on processing systems, pp. 2503-2511. 2015.
� Studer, Stefan, Thanh Binh Bui, Chris�an Drescher, Alexander Hanuschkin,
Ludwig Winkler, Steven Peters, and Klaus-Robert Mueller. "

."
arXiv preprint arXiv:2003.05155 (2020).
� Mar�nez-Plumed, Fernando, et al. "

." IEEE Transac�ons on
Knowledge and Data Engineering (2019).
📰 Kaestner, Chris�an. 

. Blog Post, 2020

Hidden technical debt in machine learning systems

Towards CRISP-ML
(Q): A Machine Learning Process Model with Quality Assurance Methodology

CRISP-DM Twenty Years Later: From Data
Mining Processes to Data Science Trajectories

On the process for building so�ware with ML
components

77


http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://arxiv.org/abs/2003.05155
https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf
https://ckaestne.medium.com/on-the-process-for-building-software-with-ml-components-c54bdb86db24


Further Reading 2
� Patel, Kayur, James Fogarty, James A. Landay, and Beverly Harrison.
" ."
In Proceedings of the SIGCHI Conference on Human Factors in Compu�ng
Systems, pp. 667-676. 2008.
� Yang, Qian, Jina Suh, Nan-Chen Chen, and Gonzalo Ramos. "

." In Proceedings of the 2018 Designing Interac�ve Systems Conference, pp.
573-584. 2018.
📰 Fowler and Highsmith. 
� Steve McConnell. So�ware project survival guide. Chapter 3
� Pfleeger and Atlee. So�ware Engineering: Theory and Prac�ce. Chapter 2
� Kruchten, Philippe, Robert L. Nord, and Ipek Ozkaya. "

." IEEE So�ware 29, no. 6 (2012): 18-21.

Inves�ga�ng sta�s�cal machine learning as a tool for so�ware development

Grounding
interac�ve machine learning tool design in how non-experts actually build
models

The Agile Manifesto

Technical debt: From
metaphor to theory and prac�ce

78


http://www.kayur.org/papers/chi2008.pdf
http://www.audentia-gestion.fr/MICROSOFT/Machine_Teaching_DIS_18.pdf
http://agilemanifesto.org/
https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_58818.pdf

