

Changing directions...

Fundamentals of Engineering Al-Enabled Systems

Holistic system view: Al and non-Al components, pipelines, stakeholders, environment interactions, feedback loops

Requirements:

System and model goals
User requirements
Environment assumptions
Quality beyond accuracy
Measurement
Risk analysis
Planning for mistakes

Architecture + design:

Modeling tradeoffs
Deployment architecture
Data science pipelines
Telemetry, monitoring
Anticipating evolution
Big data processing
Human-Al design

Quality assurance:

Model testing
Data quality
QA automation
Testing in production
Infrastructure quality
Debugging

Operations:

Continuous deployment Contin. experimentation Configuration mgmt. Monitoring Versioning Big data DevOps, MLOps

Teams and process: Data science vs software eng. workflows, interdisciplinary teams, collaboration points, technical debt

Responsible Al Engineering

Provenance, versioning, reproducibility Safety

Security and privacy

Fairness

Interpretability and explainability

Transparency and trust

Ethics, governance, regulation, compliance, organizational culture

Readings

R. Caplan, J. Donovan, L. Hanson, J. Matthews. "Algorithmic Accountability: A Primer", Data & Society (2018).

Learning Goals

- Review the importance of ethical considerations in designing AIenabled systems
- Recall basic strategies to reason about ethical challenges
- Diagnose potential ethical issues in a given system
- Understand the types of harm that can be caused by ML
- Understand the sources of bias in ML

Overview

Many interrelated issues:

- Ethics
- Fairness
- Justice
- Discrimination
- Safety
- Privacy
- Security
- Transparency
- Accountability

With a few lines of code...

Some airlines may be using algorithms to split up families during flights

Your random airplane seat assignment might not be random at all.

By Aditi Shrikant | aditi@vox.com | Nov 27, 2018, 6:10pm EST

SHARI

With a few lines of code...

Developers have substantial power in shaping products

Small design decisions can have substantial impact (safety, security, discrimination, ...) -- not always deliberate

Endagering users by not thinking through consequences? Anticipating mistakes?

Machine learning as a particular powerful and dangerous tool...

With a few lines of code...

In 2015, Shkreli received widespread criticism [...] obtained the manufacturing license for the antiparasitic drug Daraprim and raised its price from USD 13.5 to 750 per pill [...] referred to by the media as "the most hated man in America" and "Pharma Bro". -- Wikipedia

"I could have raised it higher and made more profits for our shareholders. Which is my primary duty." -- Martin Shkreli Speaker notes

Image source: https://en.wikipedia.org/wiki/Martin_Shkreli#/media/File:Martin_Shkreli_2016.jpg

Terminology

Legal = in accordance to societal laws

- systematic body of rules governing society; set through government
- punishment for violation

Ethical = following moral principles of tradition, group, or individual

- branch of philosophy, science of a standard human conduct
- professional ethics = rules codified by professional organization
- no legal binding, no enforcement beyond "shame"
- high ethical standards may yield long term benefits through image and staff loyalty

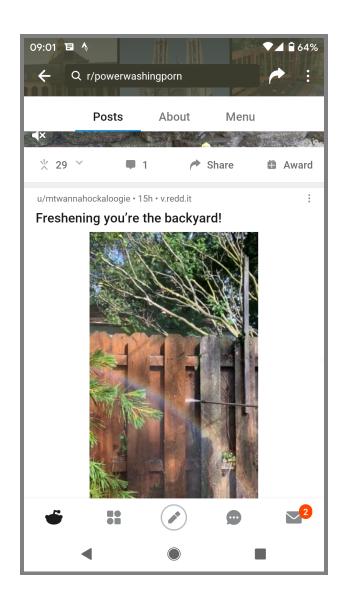
Another Example: Social Media

What is the (real) organizational objective of the company?

Optimizing for Organizational Objective

How do we maximize the user engagement? Examples:

- Infinite scroll: Encourage nonstop, continual use
- Personal recommendations:
 Suggest news feed to increase engagement
- Push notifications: Notify disengaged users to return to the app

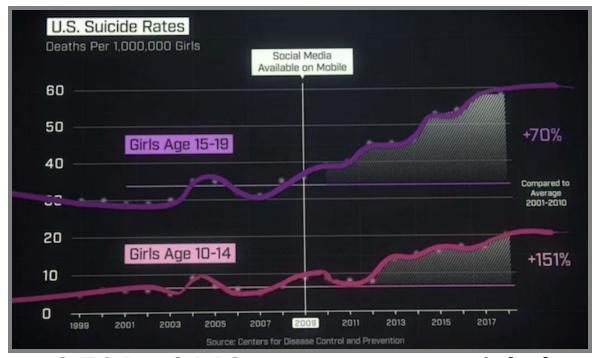


Addiction

- 210M people worldwide addicted to social media
- 71% of Americans sleep next to a mobile device
- ~1000 people injured per day due to distracted driving (USA)

https://www.flurry.com/blog/mobile-addicts-multiply-across-the-globe/; https://www.cdc.gov/motorvehiclesafety/Distracted_Driving/index.html

Mental Health

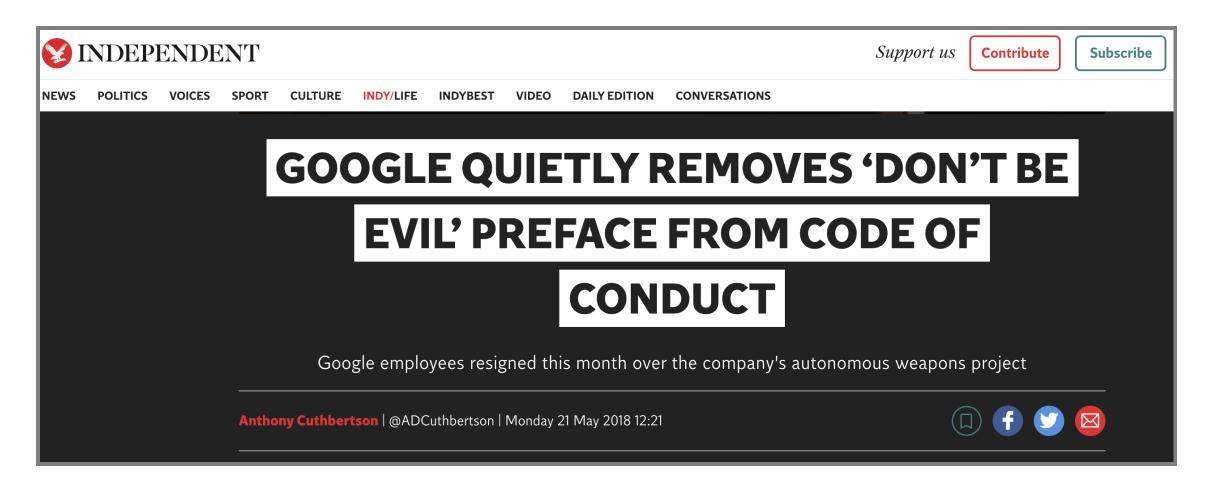


- 35% of US teenagers with low social-emotional well-being have been bullied on social media.
- 70% of teens feel excluded when using social media.

Disinformation & Polarization

Discrimination

Who's to blame?



Are these companies intentionally trying to cause harm? If not, what are the root causes of the problem?

Liability?

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Speaker notes

Software companies have usually gotten away with claiming no liability for their products

Some Challenges

Misalignment between organizational goals & societal values

• Financial incentives often dominate other goals ("grow or die")

Hardly any regulation

- Little legal consequences for causing negative impact (with some exceptions)
- Poor understanding of socio-technical systems by policy makers

Engineering challenges, at system- & ML-level

- Difficult to clearly define or measure ethical values
- Difficult to anticipate all possible usage contexts
- Difficult to anticipate impact of feedback loops
- Difficult to prevent malicious actors from abusing the system
- Difficult to interpret output of ML and make ethical decisions

These problems have existed before, but they are being rapidly exacerbated by the widespread use of ML

Responsible Engineering Matters

Engineers have substantial power in shaping products and outcomes

Serious individual and societal harms possible from (a) negligence and (b) malicious designs

- Safety, mental health, weapons
- Security, privacy
- Manipulation, addiction, surveilance, polarization
- Job loss, deskilling
- Discrimination

Buzzword or real progress?

Microsoft AI principles

We put our responsible AI principles into practice through the Office of Responsible AI (ORA) and the AI, Ethics, and Effects in Engineering and Research (Aether) Committee. The Aether Committee advises our leadership on the challenges and opportunities presented by AI innovations. ORA sets our rules and governance processes, working closely with teams across the company to enable the effort.

Learn more about our approach >

Fairness

Al systems should treat all people fairly

▶ Play video on fairness

Inclusiveness

Al systems should empower everyone and engage people

▶ Play video on inclusiveness

Reliability & Safety

Al systems should perform reliably and safely

▶ Play video on reliability

Transparency

Al systems should be understandable

▶ Play video on transparency

Privacy & Security

Al systems should be secure and respect privacy

▶ Play video on privacy

Accountability

People should be accountable for AI systems

▶ Play video on accountability

Responsible Engineering in this Course

Key areas of concern

- Fairness
- Safety
- Security and privacy
- Transparency and accountability

Technical infrastructure concepts

- Interpretability and explainability
- Versioning, provenance, reproducibility

Fairness

Legally protected classes (US)

- Race (Civil Rights Act of 1964)
- Religion (Civil Rights Act of 1964)
- National origin (Civil Rights Act of 1964)
- Sex, sexual orientation, and gender identity (Equal Pay Act of 1963, Civil Rights Act of 1964, and Bostock v. Clayton)
- Age (40 and over, Age Discrimination in Employment Act of 1967)
- Pregnancy (Pregnancy Discrimination Act of 1978)
- Familial status (preference for or against having children, Civil Rights Act of 1968)
- Disability status (Rehabilitation Act of 1973; Americans with Disabilities Act of 1990)
- Veteran status (Vietnam Era Veterans' Readjustment Assistance Act of 1974; Uniformed Services Employment and Reemployment Rights Act of 1994)
- Genetic information (Genetic Information Nondiscrimination Act of 2008)

Regulated domains (US)

- Credit (Equal Credit Opportunity Act)
- Education (Civil Rights Act of 1964; Education Amendments of 1972)
- Employment (Civil Rights Act of 1964)
- Housing (Fair Housing Act)
- 'Public Accommodation' (Civil Rights Act of 1964)

Extends to marketing and advertising; not limited to final decision

What is fair?

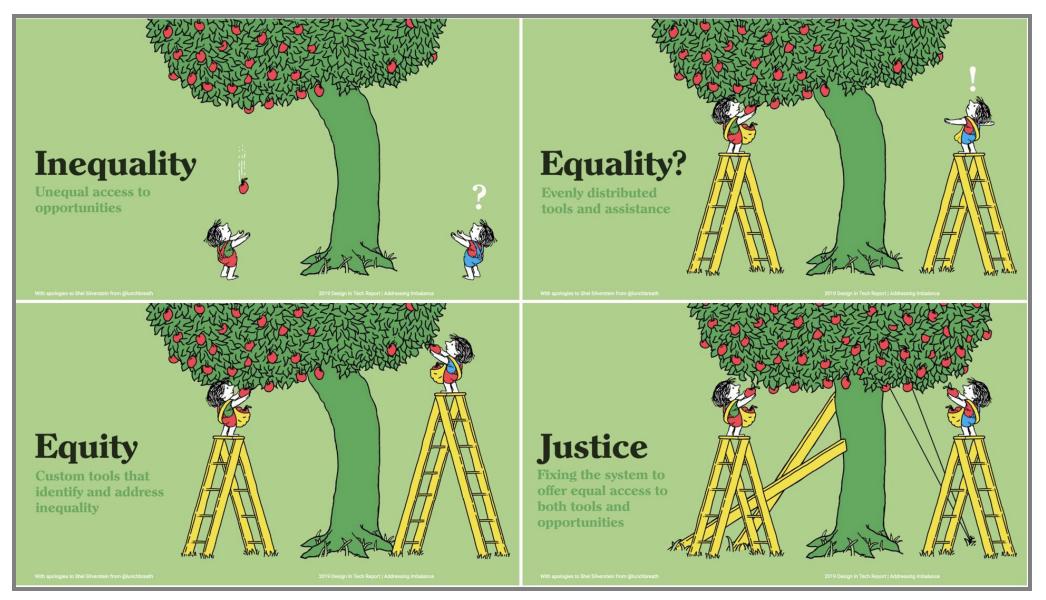
Fairness discourse asks questions about how to treat people and whether treating different groups of people differently is ethical. If two groups of people are systematically treated differently, this is often considered unfair.

Dividing a Pie?

- Equal slices for everybody
- Bigger slices for active bakers
- Bigger slices for inexperienced/new members (e.g., children)
- Bigger slices for hungry people
- More pie for everybody, bake more

(Not everybody contributed equally during baking, not everybody is■ equally hungry)

Preview: Equality vs Equity vs Justice



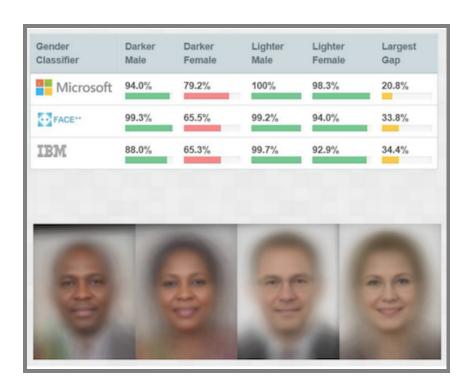
Types of Harm on Society

Harms of allocation: Withhold opportunities or resources

Harms of representation: Reinforce stereotypes, subordination along the lines of identity

Harms of Allocation

- Withhold opportunities or resources
- Poor quality of service, degraded user experience for certain groups



Harms of Representation

- Over/under-representation of certain groups in organizations
- Reinforcement of stereotypes

Ads by Google

Latanya Sweeney, Arrested?

 Enter Name and State. 2) Access Full Background Checks Instantly.

www.instantcheckmate.com/

Latanya Sweeney

Public Records Found For: Latanya Sweeney. View Now. www.publicrecords.com/

La Tanya

Search for La Tanya Look Up Fast Results now! www.ask.com/La+Tanya

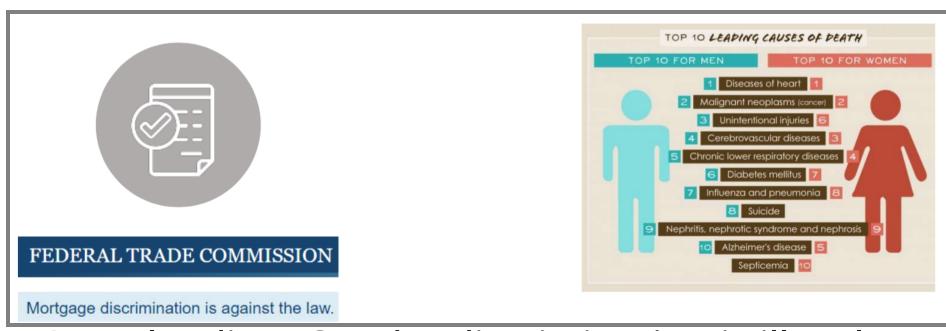
Discrimination in Online Ad Delivery, Latanya Sweeney, SSRN (2013).

Identifying harms

	Allocation of resources	Quality of Service	Stereotyping	Denigration	Over- / Under- Representation
Hiring system does not rank women as highly as men for technical jobs	X	Х	Х		Х
Photo management program labels image of black people as "gorillas"		Х		Х	
Image searches for "CEO" yield only photos of white men on first page			X		Х

- Multiple types of harms can be caused by a product!
- Think about your system objectives & identify potential harms.

Not all discrimination is harmful



- Loan lending: Gender discrimination is illegal.
- Medical diagnosis: Gender-specific diagnosis may be desirable.
- The problem is *unjustified* differentiation; i.e., discriminating on factors that should not matter
- Discrimination is a domain-specific concept (i.e., world vs machine)

Role of Requirements Engineering

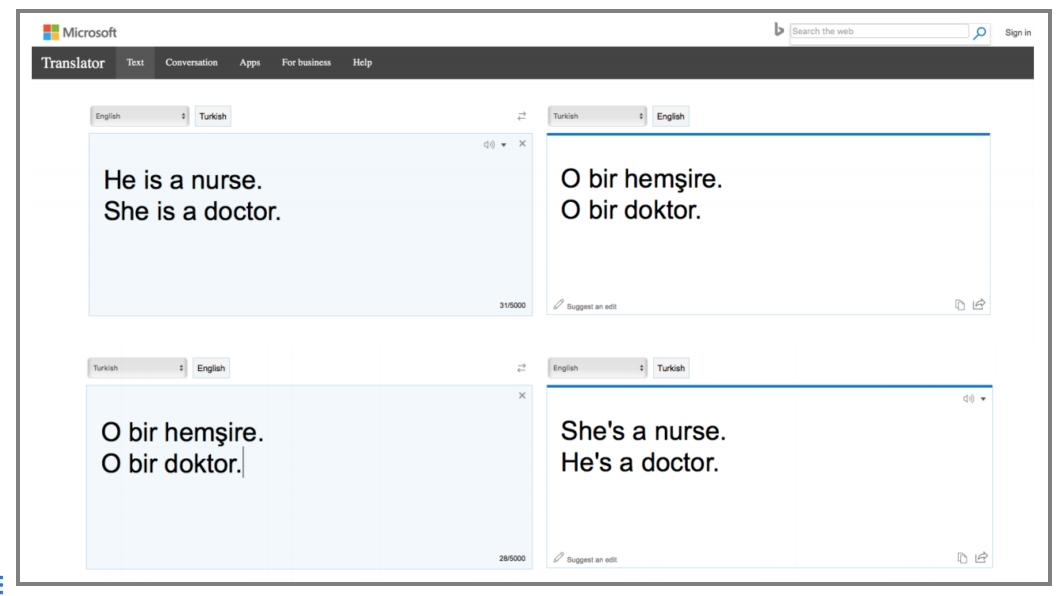
- Identify system goals
- Identify legal constraints
- Identify stakeholders and fairness concerns
- Analyze risks with regard to discrimination and fairness
- Analyze possible feedback loops (world vs machine)
- Negotiate tradeoffs with stakeholders
- Set requirements/constraints for data and model
- Plan mitigations in the system (beyond the model)
- Design incident response plan
- Set expectations for offline and online assurance and monitoring

Sources of Bias

Where does the bias come from?

Semantics derived automatically from language corpora contain human-like biases, Caliskan et al., Science (2017).

Where does the bias come from?

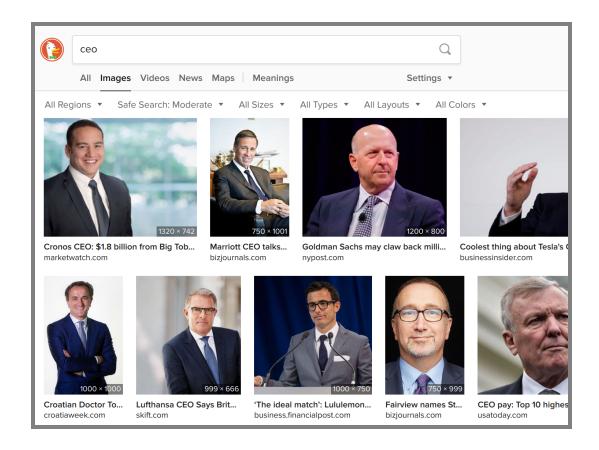


Sources of Bias

- Historial bias
- Tainted examples
- Skewed sample
- Limited features
- Sample size disparity
- Proxies

Historical Bias

Data reflects past biases, not intended outcomes



Should the algorithm reflect the reality?

Speaker notes

"An example of this type of bias can be found in a 2018 image search result where searching for women CEOs ultimately resulted in fewer female CEO images due to the fact that only 5% of Fortune 500 CEOs were woman—which would cause the search results to be biased towards male CEOs. These search results were of course reflecting the reality, but whether or not the search algorithms should reflect this reality is an issue worth considering."

Correcting Historical Bias?

"Big Data processes codify the past. They do not invent the future. Doing that requires moral imagination, and that's something only humans can provide." -- Cathy O'Neil in Weapons of Math Destruction

"Through user studies, the [image search] team learned that many users were uncomfortable with the idea of the company "manipulating" search results, viewing this behavior as unethical." -- observation from interviews by Ken Holstein

Tainted Labels

Bias in dataset labels assigned (directly or indirectly) by humans

TECH AMAZON ARTIFICIAL INTELLIGENCE

Amazon reportedly scraps internal AI recruiting tool that was biased against women

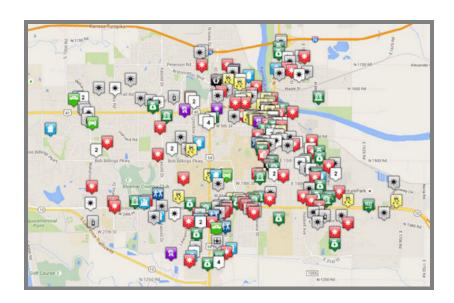
The secret program penalized applications that contained the word "women's"

By James Vincent | Oct 10, 2018, 7:09am EDT

Example: Hiring decision dataset -- labels assigned by (possibly biased) experts or derived from past (possibly biased) hiring decisions

Skewed Sample

Bias in how and what data is collected



Crime prediction: Where to analyze crime? What is considered crime? Actually a random/representative sample?

Recall: Raw data is an oxymoron

Limited Features

Features that are less informative/reliable for certain subpopulations

- Graduate admissions: Letters of recommendation equally reliable for international applicants?
- Employee performance review: "Leave of absence" acceptable feature if parental leave is gender skewed?

Speaker notes

Decisions may be based on features that are predictive and accurate for a large part of the target distribution, but not so for some other parts of the distribution. For example, a system ranking applications for graduate school admissions may heavily rely on letters of recommendation and be well calibrated for applicants who can request letters from mentors familiar with the culture and jargon of such letters in the US, but may work poorly for international applicants from countries where such letters are not common or where such letters express support with different jargon. To reduce bias, we should be carefully reviewing all features and analyze whether they may be less predictive for certain subpopulations.

Sample Size Disparity

Limited training data for some subpopulations

- Biased sampling process: "Shirley Card" used for Kodak color calibration, using mostly Caucasian models
- Small subpopulations: Sikhs small minority in US (0.2%) barely represented in a random sample

Sample Size Disparity

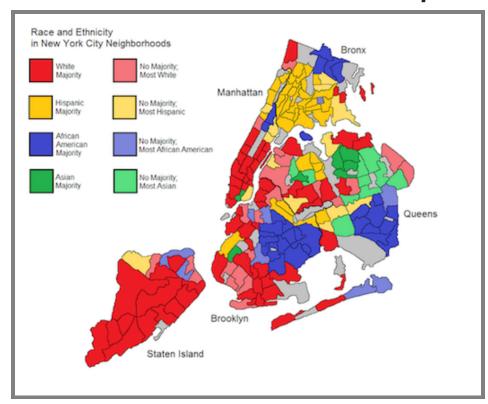
Without intervention:

- Models biased toward populations more represented in target distribution (e.g., Caucasian skin tones)
- ... biased towards population that are easier to sample (e.g., people self-selecting to post to Instagram)
- ... may ignore small minority populations as noise

Typically requires deliberate sampling strategy, intentional oversampling

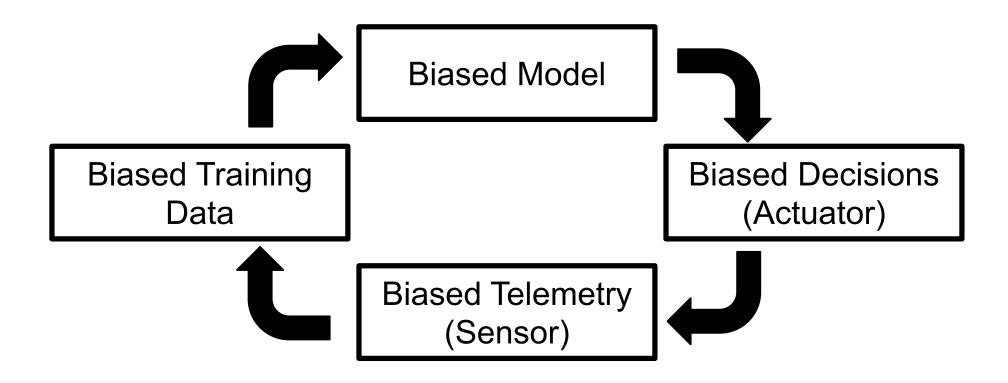
Proxies

Features correlate with protected attribute, remain after removal



- Example: Neighborhood as a proxy for race
- Extracurricular activities as proxy for gender and social class (e.g., "cheerleading", "peer-mentor for ...", "sailing team", "classical music")

Feedback Loops reinforce Bias



"Big Data processes codify the past. They do not invent the future. Doing that requires moral imagination, and that's something only humans can provide." -- Cathy O'Neil in Weapons of Math Destruction

Breakout: College Admission

Scenario: Evaluate applications & identify students likely to succeed

Features: GPA, GRE/SAT, gender, race, undergrad institute, alumni connections, household income, hometown, transcript, etc.

Breakout: College Admission

Scenario: Evaluate applications & identify students who are likely to succeed

Features: GPA, GRE/SAT, gender, race, undergrad institute, alumni connections, household income, hometown, transcript, etc.

As a group, post to #lecture tagging members:

- Possible harms: Allocation of resources? Quality of service?
 Stereotyping? Denigration? Over-/Under-representation?
- Sources of bias: Skewed sample? Tainted labels? Historical bias? Limited features? Sample size disparity? Proxies?

Next lectures

- 1. Measuring and Improving Fairness at the Model Level
- 2. Fairness is a System-Wide Concern

Summary

- Many interrelated issues: ethics, fairness, justice, safety, security, ...
- Both legal & ethical dimensions
- Challenges with developing ethical systems / developing systems responsibly
- Large potential for damage: Harm of allocation & harm of representation
- Sources of bias in ML: Skewed sample, tainted labels, limited features, sample size, disparity, proxies

Further Readings

- O'Neil, Cathy. Weapons of math destruction: How big data increases inequality and threatens democracy. Crown Publishing, 2017.
- Barocas, Solon, and Andrew D. Selbst. "Big data's disparate impact." Calif. L. Rev. 104 (2016): 671.
- Mehrabi, Ninareh, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. "A survey on bias and fairness in machine learning." ACM Computing Surveys (CSUR) 54, no. 6 (2021): 1–35.
- Bietti, Elettra. "From ethics washing to ethics bashing: a view on tech ethics from within moral philosophy." In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 210–219. 2020.

