
Machine Learning in ProductionMachine Learning in Production

Fostering InterdisciplinaryFostering Interdisciplinary
TeamsTeams
(Process and Team Reflections)(Process and Team Reflections)

1




One last crosscutting topic

3




Readings
Nahar, Nadia, Shurui Zhou, Grace Lewis, and Christian Kästner.
"

." In
International Conf. Software Engineering, 2022.

Collaboration Challenges in Building ML-Enabled Systems:
Communication, Documentation, Engineering, and Process

4


https://arxiv.org/abs/2110.10234


Learning Goals
Understand different roles in projects for AI-enabled systems
Plan development activities in an inclusive fashion for participants
in different roles
Diagnose and address common teamwork issues
Describe agile techniques to address common process and
communication issues

5




Case Study: Depression
Prognosis on Social Media

7




The Project
Social media company of about 15000 employees, 500 developers
and data scientists in US
Use sentiment analysis on video data (and transcripts) to detect
depression
Planned interventions through recommending different content
and showing ads for getting support, design for small group
features
Collaboration with mental health professionals and ML researches
at top university

8




Data
Scientists

Software
Engineers

10




Data scientist
Often fixed dataset for training and
evaluation (e.g., PBS interviews)
Focused on accuracy
Prototyping, often Jupyter
notebooks or similar
Expert in modeling techniques and
feature engineering
Model size, updateability,
implementation stability typically
does not matter

Software engineer
Builds a product
Concerned about cost, performance,
stability, release time
Identify quality through customer
satisfaction
Must scale solution, handle large
amounts of data
Detect and handle mistakes,
preferably automatically
Maintain, evolve, and extend the
product over long periods
Consider requirements for security,
safety, fairness

11




Continuum of Skills
Software Engineer
Data Engineer
Data Scientist
Applied Scientist
Research Scientist

Talk: Ryan Orban. 
. 2016

Bridging the Gap Between Data Science & Engineer: Building High-Performance
Teams

12


https://www.slideshare.net/ryanorban/bridging-the-gap-between-data-science-engineer-building-highperformance-teams/3-Software_Engineer_Data_Engineer_Data


13




By Steven Geringer, via Ryan Orban. 
. 2016

Bridging the Gap Between Data Science & Engineer: Building
High-Performance Teams

14


https://www.slideshare.net/ryanorban/bridging-the-gap-between-data-science-engineer-building-highperformance-teams/3-Software_Engineer_Data_Engineer_Data


Data Scientists At Microsoft
Mostly analyzing product and customer data
User engagement (which features users like and use, satisfaction,
retention)
Software productivity (bug priorization, monitoring)
Domain-specific problems (NLP quality, stock pricing, power
prediction)
Business intelligence (predicting investment, demand, sales)

15




Data Science Roles At Microsoft
Polymath
Data evangelist
Data preparer
Data shaper
Data analyzer
Platform builder
50/20% moonlighter
Insight actors

Kim, Miryung, Thomas Zimmermann, Robert DeLine, and Andrew Begel. "
." IEEE Transactions on Software Engineering 44, no.

11 (2017): 1024-1038.

Data scientists in
software teams: State of the art and challenges

16


https://andrewbegel.com/papers/data-scientists.pdf


Many other Role Descriptions
Data scientist
Data analyst
Data architect
Data engineer
Statistician
Database administrator
Business analyst
Data and analytics manager

e.g. Martijn Theuwissen. . 2015The different data science roles in the industry
17



https://www.kdnuggets.com/2015/11/different-data-science-roles-industry.html


Many other Role Descriptions
Product Data Analyst (feature analysis)
Business Intelligence, Analytics & Reporting (marketing)
Modeling Analyst (financial forecasting)
Machine Learning Engineer (user facing applications)
Hybrid Data Engineer/Data Scientist (data pipelining)
Hybrid Data Visualization Expert (communication, storytelling)
Data Science Platforms & Tools Developer (supporting role)

e.g. Yorgos Askalidis
. . 2019Demystifying data science roles
18



https://towardsdatascience.com/what-kind-of-data-science-role-is-right-for-you-9d2f4b117e81


Evolution of Data Science Roles

More or less engineering focus? More or less statistics focus? ...

19




Software Engineering Specializations
Architectures
Requirements engineers
Testers
Site reliability engineers
Devops
Safety
Security
UIX
Distributed systems, cloud
...

20




Needed Roles in Depression Prognosis
Projects?

21




Common other Roles in ML-Enabled
Systems?

Domain specialists
Business, management, marketing
Project management
Designers, UI experts
Operations
Safety, security specialist
Big data specialist
Lawyers
Social scientists, ethics
...

22




Interdisciplinary Teams

24




Unicorns -> Teams
Domain experts
Data scientists
Software engineers
Operators
Business leaders

25




Necessity of Groups
Division of labor
Division of expertise (e.g., security expert, ML expert, data cleaning
expert, database expert)

26




Team Issues discussed Today
Process costs
Groupthink
Social loafing
Multiple/conflicting goals

27




Team Issue:
Process Costs

29




Case Studies
Disclaimer: All pictures represent abstract developer groups or
products to give a sense of scale; they are not necessarily the
developers of those products or developers at all.

30




How to structure teams?
Microblogging platform; 3 friends

31




How to structure teams?
Banking app; 15 developers and data analysts

32




How to structure teams?
Mobile game; 50ish developers?

33




How to structure teams?
Mobile game; 200ish developers;
distributed teams?

34




How to structure teams?
Self-driving cars; 1200 developers and data analysts

35




Mythical Man Month

1975, describing experience at IBM developing OS/360

Brooks's law: Adding manpower to a late software project makes it later

36




Process Costs

n(n − 1) / 2 communication links within a team
37





Brook's Surgical Teams
Chief programmer – most programming and initial documentation
Support staff

Copilot: supports chief programmer in development tasks, represents team at
meetings
Administrator: manages people, hardware and other resources
Editor: editing documentation
Two secretaries: one each for the administrator and editor
Program clerk: keeps records of source code and documentation
Toolsmith: builds specialized programming tools
Tester: develops and runs tests
Language lawyer: expert in programming languages, provides advice on
producing optimal code.

Brooks. The Mythical Man-Month. 1971
38







Would assume unicorns in today's context.

Speaker notes



Microsoft's Small Team Practices
Vision statement and milestones (2-4 month), no formal spec
Feature selection, prioritized by market, assigned to milestones
Modular architecture
Allows small federated teams (Conway's law)
Small teams of overlapping functional specialists

(Windows 95: 200 developers and testers, one of 250 products)

39




Microsoft's Feature Teams
3-8 developers (design, develop)
3-8 testers (validation, verification, usability, market analysis)
1 program manager (vision, schedule communication; leader,
facilitator) – working on several features
1 product manager (marketing research, plan, betas)

40




Microsoft's Process
"Synchronize and stabilize"
For each milestone

6-10 weeks feature development and continuous testing
frequent merges, daily builds
2-5 weeks integration and testing (“zero-bug release”, external
betas )
2-5 weeks buffer

41




Agile Practices (e.g., Scrum)
7±2 team members, collocated
self managing
Scrum master (potentially shared among 2-3 teams)
Product owner / customer representative

42




Large teams (29 people) create around six times as many defects as small
teams (3 people) and obviously burn through a lot more money. Yet, the
large team appears to produce about the same mount of output in only
an average of 12 days’ less time. This is a truly astonishing finding,
through it fits with my personal experience on projects over 35 years. -
Phillip Amour, 2006, CACM 49:9

43


https://dl.acm.org/citation.cfm?id=1151043


Establish communication patterns
Avoid overhead
Ensure reliability
Constraint latency

e.g. Issue tracker vs email; online vs face to face

44




Establishing Interfaces
When dividing work, need to agree on interface
Common source of mismatch and friction
Examples?

Team A uses data produced by Team B
Team C deploys model produced by team A
Team D uses model and needs to provide feedback to Team A
Team D waits for improvement/feature from model A

Ideally interfaces are stable and well documented

45




Awareness
Notifications
Brook's documentation book
Email to all
Code reviews

46




Conway’s Law
“Any organization that designs a system (defined broadly) will produce a
design whose structure is a copy of the organization's communication
structure.” — Mel Conway, 1967

“If you have four groups working on a compiler, you'll get a 4-pass
compiler.”

47




Congurence

Structural congruence,
Geographical congruence,
Task congruence,
IRC communication congruence

48




Engineering Recommendations for
Structuring AI-Enabled Systems

Decompose the system
Independent components (e.g. microservices)
Isolate AI if possible
Clear, stable interfaces, minimal coupling
Monitoring to observe contracts and quality

49




Team Structure for Transcription Service?

50




Breakout: Team Structure for Depression
Prognosis
In groups, tagging team members, discuss and post in #lecture:

How to decompose the work into teams?
What roles to recruit for the teams

51




Story Time: Conflicts at the
Interface between Teams

53




54




55




Common Challenge: Establishing Interfaces
Formal vs informal agreements?
Service level agreements and automated enforcement?
Close collaboration vs siloed teams?

Many concerns: prediction accuracy, generalization, execution
time, scalability, data quality, data quantity, feedback latency,
privacy, explainability, time estimation, ...
Formal agreements and enforcement expensive, slowing
development? see technical debt

56




Common Collaboration Points
1. Understanding system requirements and ML capabilities
2. Understanding ML-specific requirements at the system level, reasoning about

feedback loops
3. Project planning and architecture design
4. Data needs, data quality, data meaning
5. Documenting model output
6. Planning and monitoring for drift
7. Planning ML component QA (offline, online, monitoring)
8. Planning system QA (integration, interaction, safety, feedback loops)
9. Tool support for data scientists

10. From prototype to production (pipelines, versioning, operations, user
interactions, ...)

57




Team issues:
Multiple/conflicting goals
(Organization of Interdisciplinary Teams)

59




Conflicting Goals?

60




Conflicting Goals?

Data
Scientists

Software
Engineers

61




Conflicting Goals?

Data
Scientists

Compliance
Lawyers

62




Conflicting Goals?

63




How to Address Goal Conflicts?

64




T-Shaped People
Broad-range generalist + Deep expertise

Figure: Jason Yip. . 2018Why T-shaped people?
65



https://medium.com/@jchyip/why-t-shaped-people-e8706198e437


T-Shaped People
Broad-range generalist + Deep expertise

Example:
Basic skills of software engineering, business, distributed
computing, and communication
Deep skills in deep neural networks (technique) and medical
systems (domain)

66




Team Composition
Cover deep expertise in all important areas
Aim for overlap in general skills

Fosters communication, same language

67




Matrix Organization

68




Project Organization

69




Case Study: Brøderbund

Mantle, Mickey W., and Ron Lichty. 
. Addison-Wesley Professional, 2012.

As the functional departments grew, staffing the heavily matrixed projects became more and more of a
nightmare. To address this, the company reorganized itself into “Studios”, each with dedicated resources
for each of the major functional areas reporting up to a Studio manager. Given direct responsibility for
performance and compensation, Studio managers could allocate resources freely.

The Studios were able to exert more direct control on the projects and team members, but not without a
cost. The major problem that emerged from Brøderbund’s Studio reorganization was that members of the
various functional disciplines began to lose touch with their functional counterparts. Experience wasn’t
shared as easily. Over time, duplicate effort began to appear.

Managing the unmanageable: rules, tools, and insights for
managing software people and teams

70


https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/8lb6it/cdi_askewsholts_vlebooks_9780132981279


Specialist Allocation (Organizational
Architectures)

Centralized: development teams consult with a core group of
specialists when they need help
Distributed: development teams hire specialists to be a first-class
member of the team
Weak Hybrid: centralized group of specialists and teams with
critical applications hire specialists
Strong Hybrid: centralized group of specialists and most teams also
hire specialists

Tradeoffs?
71





Example: Security Roles
Everyone: “security awareness” – buy into the process
Developers: know the security capabilities of development tools
and use them, know how to spot and avoid relevant, common
vulnerabilities
Managers: enable the use of security practices
Security specialists: everything security

72




Allocation of Data Science/Software
Engineering Expertise?

73




Commitment & Accountability
Conflict is useful, expose all views
Come to decision, commit to it
Assign responsibilities
Record decisions and commitments; make record available

74




Bell & Hart – 8 Causes of Conflict
Conflicting resources.
Conflicting styles.
Conflicting perceptions.
Conflicting goals.
Conflicting pressures.
Conflicting roles.
Different personal values.
Unpredictable policies.

Understanding causes helps design interventions. Examples?

Bell, Art. (2002). .
University of San FranciscoSix ways to resolve workplace conflicts
75



https://www.mindtools.com/pages/article/eight-causes-conflict.htm


Agile Techniques to Address Conflicting
Goals?

76




Team issues: Groupthink

78




Groupthink
Group minimizing conflict
Avoid exploring alternatives
Suppressing dissenting views
Isolating from outside influences
-> Irrational/dysfunctional decision making

79




Example: Time and Cost Estimation

80




Example: Use of Hype Technology
(agile, block chain, machine learning, devops, AIOps, ...)

81




Causes of Groupthink
High group cohesiveness, homogeneity
Structural faults (insulation, biased leadership, lack of
methodological exploration)
Situational context (stressful external threats, recent failures, moral
dilemmas)

82




Symptoms
Overestimation of ability: invulnerability, unquestioned believe in
morality
Closed-mindedness: ignore warnings, stereotyping; innovation
averse
Pressure toward uniformity: self-censorship, illusion of
unanimity, …

83




84




Diversity
“Men and women have different viewpoints, ideas, and market insights, which enables better problem
solving. A gender-diverse workforce provides easier access to resources, such as various sources of credit,
multiple sources of information, and wider industry knowledge. A gender-diverse workforce allows the
company to serve an increasingly diverse customer base. Gender diversity helps companies attract and
retain talented women.”

“Cultural diversity leads to process losses through task conflict and decreased social integration, but to
process gains through increased creativity and satisfaction.”

85




Groupthink and AI-Enabled System
Projects?

86




Groupthink and AI
Need of AI
Selection of learning method
Fairness
Safety requirements (e.g. Pitt delivery robot)
Ethics

87




Mitigation Strategies

88




Mitigation Strategies
Diversity in team composition
Culture of open conflicts
Appoint devil's advocate in discussions, moderate and rotate
speaker order, leaders hide opinions in discussions
Involve outside experts
Always request a second solution
Monitoring and process measurement
Agile techniques as planning poker, on-site customer

89




Team issues: Social loafing

91




Latane, Bibb, Kipling Williams, and Stephen Harkins. "
" Journal of personality and social psychology 37.6 (1979): 822.

Many hands make light the work: The causes
and consequences of social loafing.

92


http://web.mit.edu/curhan/www/docs/Articles/15341_Readings/Group_Dynamics/required_reading/4Latane_et_al_1979_Many_hands_make_light_the_work.pdf


Social Loafing
People exerting less effort within a group
Reasons

Diffusion of responsibility
Motivation
Dispensability of effort / missing recognition
Avoid pulling everybody / "sucker effect"
Submaximal goal setting

“Evaluation potential, expectations of co-worker performance, task
meaningfulness, and culture had especially strong influence”

Karau, Steven J., and Kipling D. Williams. "
." Journal of personality and social psychology 65.4 (1993): 681.

Social loafing: A meta-analytic review and theoretical
integration

93


https://www1.psych.purdue.edu/~willia55/392F-%2706/KarauWilliamsMetaAnalysisJPSP.pdf


Mitigation Strategies

94




Mitigation Strategies
Involve all team members, colocation
Assign specific tasks with individual responsibility

Increase identifiability
Team contracts, measurement

Provide choices in selecting tasks
Promote involvement, challenge developers
Reviews and feedback
Team cohesion, team forming exercises
Small teams

95




Responsibilities & Buy-In
Involve team members in decision making
Assign responsibilities (ideally goals not tasks)
Record decisions and commitments; make record available

96




Motivation
Autonomy * Mastery * Purpose

97




Learning from DevOps

99




DevOps: A culture of collaboration
Overcome historic role and goal conflicts between developers and
operators
Joint planning for operations, joint responsibilities for testing and
deployment

Joint goals, joint vocabulary
Joint tools (e.g., Docker, versioning, A/B testing, monitoring)
Mutual benefits (faster releases, more telemetry, improved
reliability, fewer conflicts)
T-shaped professionals

100




Changing practices and culture is hard
Ingrained "us vs them" and blame culture
Inertia is hard to overcome (“this is how we always did things”)
Learning cost for new concepts and tools
Extra effort for new practices (e.g., testing)
Overwhelmed with current tasks, no time to learn/change
Poor adoption may cause more costs than benefits

101




Working on Culture Change
Bottom-up and top-down change possible
Often introduced by individual advocates, convincing others
Always requires supportive management
Education helps generate buy-in
Consultants can help with adoption and learning

Demonstrate benefits in one small project, promote from there

102




Beyond DevOps

103




Summary
Team dysfunctions well studied
Know the signs, know the interventions
Small teams, crossfunctional teams

Deliberately create teams, respect congruence, define interfaces
Hire T-shaped developers

Create awareness and accountability

105




Further Readings
🕮 Brooks Jr, Frederick P. . Pearson
Education, 1995.
🕮 DeMarco, Tom, and Tim Lister. . Addison-Wesley,
2013.
🕮 Mantle, Mickey W., and Ron Lichty. 

. Addison-Wesley Professional, 2019.
🕮 Lencioni, Patrick. " " Jossey-Bass (2002).
🗎 Rakova, Bogdana, Jingying Yang, Henriette Cramer, and Rumman Chowdhury. "

." Proceedings of the ACM on Human-Computer Interaction 5, no. CSCW1 (2021): 1-23.
🗎 Luz, Welder Pinheiro, Gustavo Pinto, and Rodrigo Bonifácio. "

." Journal of Systems and Software 157 (2019):
110384.
🗎 Sambasivan, Nithya, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen Paritosh, and
Lora M. Aroyo. "

". In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, pp. 1-15. 2021.

The mythical man-month: essays on software engineering

Peopleware: productive projects and teams

Managing the unmanageable: rules, tools, and insights for
managing software people and teams

The five dysfunctions of a team: A Leadership Fable.
Where

responsible AI meets reality: Practitioner perspectives on enablers for shifting organizational
practices

Adopting DevOps in the real
world: A theory, a model, and a case study

“Everyone wants to do the model work, not the data work”: Data Cascades in
High-Stakes AI

106


https://bookshop.org/books/the-mythical-man-month-essays-on-software-engineering-anniversary-edition/9780201835953
https://bookshop.org/books/peopleware-productive-projects-and-teams-revised/9780321934116
https://www.managingtheunmanageable.net/
https://bookshop.org/books/the-five-dysfunctions-of-a-team-a-leadership-fable-9780787960759/9780787960759
https://arxiv.org/abs/2006.12358
http://gustavopinto.org/lost+found/jss2019.pdf
https://research.google/pubs/pub49953/

