
RISK AND PLANNING FORRISK AND PLANNING FOR
MISTAKESMISTAKES

Christian Kaestner

With slides adopted from Eunsuk Kang

Required reading: � Hulten, Geoff. "Building Intelligent Systems: A Guide to Machine Learning Engineering." (2018),
Chapters 6–8 (Why creating IE is hard, balancing IE, modes of intelligent interactions) and 24 (Dealing with

Mistakes)
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LEARNING GOALS:LEARNING GOALS:
Analyze how mistake in an AI component can influence the behavior of a
system
Analyze system requirements at the boundary between the machine and
world
Evaluate risk of a mistake from the AI component using fault trees
Design and justify a mitigation strategy for a concrete system
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WRONG PREDICTIONSWRONG PREDICTIONS
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Cops raid music fan’s flat a�er Alexa Amazon Echo device
‘holds a party on its own’ while he was out Oliver

Haberstroh's door was broken down by irate cops a�er
neighbours complained about deafening music blasting

from Hamburg flat

https://www.thesun.co.uk/news/4873155/cops-raid-german-blokes-house-a�er-
his-alexa-music-device-held-a-party-on-its-own-while-he-was-out/

News broadcast triggers Amazon Alexa devices to purchase
dollhouses.

https://www.snopes.com/fact-check/alexa-orders-dollhouse-and-cookies/
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https://www.thesun.co.uk/news/4873155/cops-raid-german-blokes-house-after-his-alexa-music-device-held-a-party-on-its-own-while-he-was-out/
https://www.snopes.com/fact-check/alexa-orders-dollhouse-and-cookies/
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YOUR EXAMPLES?YOUR EXAMPLES?
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SOURCES OF WRONGSOURCES OF WRONG
PREDICTIONSPREDICTIONS
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SOURCES OF WRONG PREDICTIONS?SOURCES OF WRONG PREDICTIONS?
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CORRELATION VS CAUSATIONCORRELATION VS CAUSATION
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CONFOUNDING VARIABLESCONFOUNDING VARIABLES

spurious correlatio

causa
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HIDDEN CONFOUNDSHIDDEN CONFOUNDS
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ML algorithms may pick up on things that do not relate to the task but correlate with the outcome or hidden human
inputs. For example, in cancer prediction, ML models have picked up on the kind of scanner used, learning that mobile
scanners were used for particularly sick patients who could not be moved to the large installed scanners in a different
part of the hospital.
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REVERSE CAUSALITYREVERSE CAUSALITY

4 . 6



(from Prediction Machines, Chapter 6) Early 1980s chess program learned from Grandmaster games, learned that
sacrificing queen would be a winning move, because it was occuring frequently in winning games. Program then started
to sacrifice queen early.
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REVERSE CAUSALITYREVERSE CAUSALITY
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(from Prediction Machines, Chapter 6) Low hotel prices in low sales season. Model might predict that high prices lead to
higher demand.
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MISSING COUNTERFACTUALSMISSING COUNTERFACTUALS
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Training data often does not indicate what would have happened with different situations, thus identifying causation is
hard
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OTHER ISSUESOTHER ISSUES
Insufficient training data
Noisy training data
Biased training data
Overfitting
Poor model fit, poor model selection, poor hyperparameters
Missing context, missing important features
Noisy inputs
"Out of distribution" inputs
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ANOTHER PERSPECTIVE: WHAT DO WE KNOW?ANOTHER PERSPECTIVE: WHAT DO WE KNOW?
Known knowns:

Rich data available, models can make confident predictions near training data
Known unknowns (known risks):

We know that model's predictions will be poor; we have too little relevant training
data, problem too hard
Model may recognize that its predictions are poor (e.g., out of distribution)
Humans are o�en better, because they can model the problem and make
analogies

Unknown unknowns:
"Black swan events", unanticipated changes could not have been predicted
Neither machines nor humans can predict these

Unknown knowns:
Model is confident about wrong answers, based on picking up on wrong
relationships (reverse causality, omitted variables) or attacks on the model

Examples?

� Ajay Agrawal, Joshua Gans, Avi Goldfarb. “ ” 2018, Chapter 6Prediction Machines: The Simple Economics of Artificial Intelligence
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https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/6lpsnm/alma991019698987304436


Examples:

Known knowns: many current AI applications, like recommendations, navigation, translation
Known unknowns: predicting elections, predicting value of merger
Unknown unknown: new technology (mp3 file sharing), external disruptions (pandemic)
Unknown knowns: chess example (sacrificing queen detected as promising move), book making you better at a
task?
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ACCEPTING THAT MISTAKESACCEPTING THAT MISTAKES
WILL HAPPENWILL HAPPEN
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ML MODELS MAKE CRAZY MISTAKESML MODELS MAKE CRAZY MISTAKES
Humans o�en make predicable mistakes

most mistakes near to correct answer, distribution of mistakes
ML models may be wildly wrong when they are wrong

especially black box models may use (spurious) correlations humans
would never think about
may be very confident about wrong answer
"fixing" one mistake may cause others
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ACCEPTING MISTAKESACCEPTING MISTAKES
Never assume all predictions will be correct or close
Always expect random, unpredictable mistakes to some degree, including
results that are wildly wrong
Best efforts at more data, debugging, "testing" likely will not eliminate the
problem

Hence: Anticipate existence of mistakes, focus on worst case analysis and
mitigation outside the model -- system perspective needed

Alternative paths: symbolic reasoning, interpretable models, and restricting
predictions to "near" training data
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RECALL: EXPERIENCE/UI DESIGNRECALL: EXPERIENCE/UI DESIGN
Balance forcefulness (automate, prompt, organize, annotate), frequency of

interactions
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RECALL: SYSTEM-LEVEL SAFEGUARDSRECALL: SYSTEM-LEVEL SAFEGUARDS

(Image CC BY-SA 4.0, C J Cowie)
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COMMON STRATEGIES TOCOMMON STRATEGIES TO
HANDLE MISTAKESHANDLE MISTAKES

6 . 1



GUARDRAILSGUARDRAILS
So�ware or hardware overrides outside the AI component
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REDUNDANCY AND VOTINGREDUNDANCY AND VOTING
Train multiple models, combine with heuristics, vote on results

Ensemble learning, reduces overfitting
May learn the same mistakes, especially if data is biased
Hardcode known rules (heuristics) for some inputs -- for important inputs

Examples?

6 . 3



HUMAN IN THE LOOPHUMAN IN THE LOOP
Less forceful interaction, making suggestions, asking for confirmation

AI and humans are good at predictions in different settings
e.g., AI better at statistics at scale and many factors; humans
understand context and data generation process and o�en better
with thin data (see known unknowns)

AI for prediction, human for judgment?
But

Notification fatigue, complacency, just following predictions; see
Tesla autopilot
Compliance/liability protection only?

Deciding when and how to interact
Lots of UI design and HCI problems

Examples?
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Cancer prediction, sentencing + recidivism, Tesla autopilot, military "kill" decisions, powerpoint design suggestions
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UNDOABLE ACTIONSUNDOABLE ACTIONS
Design system to reduce consequence of wrong predictions, allowing humans to

override/undo

Examples?
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Smart home devices, credit card applications, Powerpoint design suggestions
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REVIEW INTERPRETABLE MODELSREVIEW INTERPRETABLE MODELS
Use interpretable machine learning and have humans review the rules

-> Approve the model as specification

IF age between 18–20 and sex is male THEN predict arrest 
ELSE IF age between 21–23 and 2–3 prior offenses THEN predict ar
ELSE IF more than three priors THEN predict arrest 
ELSE predict no arrest
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RISK ANALYSISRISK ANALYSIS
(huge field, many established techniques; here overview only)
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WHAT'S THE WORST THAT COULD HAPPEN?WHAT'S THE WORST THAT COULD HAPPEN?

Likely?

Toby Ord predicts existential risk from GAI at 10% within 100 years

Toby Ord, "The Precipice: Existential Risk and the Future of Humanity", 2020

7 . 2



Discussion on existential risk. Toby Ord, Oxford philosopher predicts
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https://www.decisionproblem.com/paperclips/index2.html
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WHAT'S THE WORST THAT COULD HAPPEN?WHAT'S THE WORST THAT COULD HAPPEN?
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WHAT IS RISK ANALYSIS?WHAT IS RISK ANALYSIS?
What can possibly go wrong in my system, and what are potential impacts
on system requirements?
Risk = Likelihood * Impact
Many established methods:

Failure mode & effects analysis (FMEA)
Hazard analysis
Why-because analysis
Fault tree analysis (FTA)
Hazard and Operability Study (HAZOP)
...
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RISKS?RISKS?
Lane assist system
Credit rating
Amazon product recommendation
Audio transcription service
Cancer detection
Predictive policing

Discuss potential risks, including impact and likelyhood



7 . 10



FAULT TREE ANALYSIS (FTA)FAULT TREE ANALYSIS (FTA)
Fault tree: A top-down diagram that displays the relationships between a
system failure (i.e., requirement violation) and its potential causes.

Identify sequences of events that result in a failure
Prioritize the contributors leading to the failure
Inform decisions about how to (re-)design the system
Investigate an accident & identify the root cause

O�en used for safety & reliability, but can also be used for other types of
requirement (e.g., poor performance, security attacks...)
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FAULT TREE EXAMPLEFAULT TREE EXAMPLE

Every tree begins with a TOP event (typically a violation of a requirement)
Every branch of the tree must terminate with a basic event

Figure from Fault Tree Analysis and Reliability Block Diagram (2016), Jaroslav Menčík.
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FAULT TREES: BASIC BUILDING BLOCKSFAULT TREES: BASIC BUILDING BLOCKS

Event: An occurrence of a fault or an undesirable action
(Intermediate) Event: Explained in terms of other events
Basic Event: No further development or breakdown; leafs of the tree

Gate: Logical relationship between an event & its immedicate subevents
AND: All of the sub-events must take place

OR: Any one of the sub-events may result in the parent event

Figure from Fault Tree Analysis and Reliability Block Diagram (2016), Jaroslav Menčík.
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ANALYSISANALYSIS
What can we do with fault trees?

Qualitative analysis:
Determine potential root
causes of a failiure through
minimal cut set analysis
Quantitative analysis:
Compute the probability of
a failure, based on
estimated probabilities of
basic events

(cut set = set of basic events whose
simultaneous occurrence is sufficient to

guarantee that the TOP event occurs)
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Minimal cut set: A cut set from which a smaller cut set can be obtained by removing a basic event.
Switch failed alone is sufficient (minimal cut set), so is fused burned, whereas lamp1 + lamp2 burned is a cut set,
but not minimal.
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FAULT TREE ANALYSIS & AIFAULT TREE ANALYSIS & AI
Anticipate mistakes and understand consequences
How do mistakes made by AI contribute to system failures/catastrophe?
Increasingly used in automotive, aeronautics, industrial control systems,
etc.
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FTA PROCESSFTA PROCESS
1. Specify the system structure

Environment entities & machine components
Assumptions (ENV) & specifications (SPEC)

2. Identify the top event as a violation of REQ
3. Construct the fault tree

Intermediate events can be derived from violation of SPEC/ENV
4. Analyze the tree

Identify all possible minimal cut sets
5. Consider design modifications to eliminate certain cut sets
6. Repeat
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EXERCISE: DRAW FAULT TREE FOR SMART TOASTEREXERCISE: DRAW FAULT TREE FOR SMART TOASTER
TOP: Smart toaster burning
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FAULT-TREE ANALYSIS DISCUSSIONFAULT-TREE ANALYSIS DISCUSSION
Town-down, backward search for the root cause of issues

from final outcomes to initiating events
Issues (TOP events) need to be known upfront
Quantitative analysis possible
Useful for understanding faults post-hoc
Where do outcomes come from?
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FAILURE MODE AND EFFECTS ANALYSIS (FMEA)FAILURE MODE AND EFFECTS ANALYSIS (FMEA)

A forward search technique to identify potential hazards
Widely used in aeronautics, automotive, healthcare, food services,
semiconductor processing, and (to some extent) so�ware
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FMEA PROCESSFMEA PROCESS
Identify system components
Enumerate potential failure modes

for ML component: Always suspect prediction may be wrong
For each failure mode, identify:

Potential hazardous effect on the system
Method for detecting the failure
Potential mitigation strategy
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FMEA EXAMPLE: LANE ASSISTFMEA EXAMPLE: LANE ASSIST

Camera LanePrediction

SteeringStatus

SteeringPlanning

Guardian

SteeringActuators

BeeperGyroSensor

Failure modes? Failure effects? Detection? Mitigation?
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More general Autonomous Vehicle example

Component Failure Mode Failure Effects Detection Mitigation

Perception
Failure to detect an
object

Risk of collision
Human operator (if
present)

Deploy secondary
classifier

Perception
Detected but
misclassified

" " "

Lidar
Sensor

Mechanical failure
Inability to detect
objects

Monitor
Switch to manual control
mode

... ... ... ... ...
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"WRONG PREDICTION" AS FAILURE MODE?"WRONG PREDICTION" AS FAILURE MODE?
"Wrong prediction" is a very cause grained failure mode
May not be possible to decompose further
However, may evaluate causes of wrong prediction for better
understanding, as far as possible --> FTA?
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EXERCISE: FMEA ANALYSIS FOR SMART TOASTEREXERCISE: FMEA ANALYSIS FOR SMART TOASTER
(video sensor, temperature sensor, heat sensor, user setting, ML model, heuristic

shutdown, thermal fuse)

Failure modes? Failure effects? Detection? Mitigation?

7 . 23



FMEA SUMMARYFMEA SUMMARY
Forward analysis: From components to possible failures
Focus on single component failures, no interactions
Identifying failure modes may require domain understanding
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HAZARD AND INTEROPERABILITY STUDY (HAZOP)HAZARD AND INTEROPERABILITY STUDY (HAZOP)
identify hazards and component fault scenarios through guided inspection of

requirements
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DECOMPOSINGDECOMPOSING
REQUIREMENTS TOREQUIREMENTS TO

UNDERSTAND PROBLEMSUNDERSTAND PROBLEMS
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THE ROLE OF REQUIREMENTS ENGINEERINGTHE ROLE OF REQUIREMENTS ENGINEERING
Requirements engineering essential to understand risks and mistake
mitigation
Understand

user interactions
safety requirements
security and privacy requirements
fairness requirements
possible feedback loops
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MACHINE VS WORLDMACHINE VS WORLD

No so�ware lives in vacuum; every system is deployed as part of the world
A requirement describes a desired state of the world (i.e., environment)
Machine (so�ware) is created to manipulate the environment into this state
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SHARED PHENOMENASHARED PHENOMENA

Shared phenomena: Interface between the world & machine (actions,
events, dataflow, etc.,)
Requirements (REQ) are expressed only in terms of world phenomena
Assumptions (ENV) are expressed in terms of world & shared phenomena
Specifications (SPEC) are expressed in terms of machine & shared
phenomena
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DISCUSSION: MACHINE VS WORLDDISCUSSION: MACHINE VS WORLD

Discuss examples for self-driving car, Amazon product recommendation, smart
toaster
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EXAMPLE: LANE ASSISTEXAMPLE: LANE ASSIST

Requirement: Car should beep when exiting lane / adjust steering to stay in
lane
Environment assumptions: ??
Specifications: ??
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ENV: Engine is working as intended; sensors are providing accurate information about the leading car (current speed,
distance...) SPEC: Depending on the sensor readings, the controller must issue an actuator command to beep/steer the
vehicle as needed.
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RECALL: LACK OF SPECIFICATIONS FOR AIRECALL: LACK OF SPECIFICATIONS FOR AI
COMPONENTSCOMPONENTS

In addition to world vs machine challenges
We do not have clear specifications for AI components

goals, average accuracy
at best probabilistic specifications in some symbolic AI techniques

Viewpoint: Machine learning techniques mine specifications from data, but
not usually understandable
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WHAT COULD GO WRONG?WHAT COULD GO WRONG?

Missing/incorrect environmental assumptions (ENV)
Wrong specification (SPEC)
Inconsistency in assumptions & spec (ENV ∧ SPEC = False)
Inconsistency in requirements (REQ = False)
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NON-AI EXAMPLE: LUFTHANSA 2904 RUNWAYNON-AI EXAMPLE: LUFTHANSA 2904 RUNWAY
CRASHCRASH

Reverse thrust (RT): Decelerates plane during landing
What was required (REQ): RT enabled if and only if plane on the ground
What was implemented (SPEC): RT enabled if and only if wheel turning
But: Runway wet + wind, wheels did not turn, pilot overridden by so�ware8 . 9



For more details see ; Image credit 

Speaker notes

https://en.wikipedia.org/wiki/Lufthansa_Flight_2904 Mariusz Siecinski

https://en.wikipedia.org/wiki/Lufthansa_Flight_2904
https://en.wikipedia.org/wiki/Lufthansa_Flight_2904#/media/File:Lufthansa_Flight_2904_crash_site_Siecinski.jpg


FEEDBACK LOOPS AND ADVERSARIESFEEDBACK LOOPS AND ADVERSARIES

Feedback loops: Behavior of the machine affects the world, which affects
inputs to the machine
Data dri�: Behavior of the world changes over time, assumptions no longer
valid
Adversaries: Bad actors deliberately may manipulate inputs, violate
environment assumptions

Examples?
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IMPLICATIONS ON SOFTWARE DEVELOPMENTIMPLICATIONS ON SOFTWARE DEVELOPMENT
So�ware/AI alone cannot establish system requirements -- they are just one
part of the system
Environmental assumptions are just as critical

But typically you can't modify these
Must design SPEC while treating ENV as given

If you ignore/misunderstand these, your system may fail to satisfy its
requirements
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DERIVING SPEC FROM REQDERIVING SPEC FROM REQ
1. Identify environmental entities and machine components
2. State a desired requirement (REQ) over the environment
3. Identify the interface between the environment & machines
4. Identify the environmental assumptions (ENV)
5. Develop so�ware specifications (SPEC) that are sufficient to establish REQ
6. Check whether ENV ∧ SPEC ⊧ REQ
7. If NO, strengthen SPEC & repeat Step 6
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17-445 So�ware Engineering for AI-Enabled Systems, Christian Kaestner

SUMMARYSUMMARY
Accept that ML components will confidently make mistakes
Many reasons for wrong predictions (poor data, reverse causation, ...)
Plan for mistakes

System-level safeguards
Human computer interaction, interface design

Understand world-machine interactions
Use Risk/Hazard analysis to identify and mitigate potential problems
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