
SOFTWARE ARCHITECTURESOFTWARE ARCHITECTURE
OF AI-ENABLED SYSTEMSOF AI-ENABLED SYSTEMS

Christian Kaestner

Required reading:

� Hulten, Geoff. " " Apress, 2018,
Chapter 13 (Where Intelligence Lives).
� Daniel Smith. " ." TheoryLane Blog Post. 2017.

Building Intelligent Systems: A Guide to Machine Learning Engineering.

Exploring Development Patterns in Data Science

1

https://www.buildingintelligentsystems.com/
https://www.theorylane.com/2017/10/20/some-development-patterns-in-data-science/

LEARNING GOALSLEARNING GOALS
Create architectural models to reason about relevant characteristics
Critique the decision of where an AI model lives (e.g., cloud vs edge vs
hybrid), considering the relevant tradeoffs
Deliberate how and when to update models and how to collect telemetry

2

SOFTWARE ARCHITECTURESOFTWARE ARCHITECTURE

Requirements Miracle / genius developers Implementation

3 . 1

SOFTWARE ARCHITECTURESOFTWARE ARCHITECTURE
Requirements Architecture Implementation

Focused on reasoning about tradeoffs and desired qualities

3 . 2

SOFTWARE ARCHITECTURESOFTWARE ARCHITECTURE

The so�ware architecture of a program or computing
system is the structure or structures of the system, which

comprise so�ware elements, the externally visible
properties of those elements, and the relationships among

them. -- Kazman et al. 2012

3 . 3

https://www.oreilly.com/library/view/software-architecture-in/9780132942799/?ar

WHY ARCHITECTURE? (WHY ARCHITECTURE? ())
Represents earliest design decisions.
Aids in communication with stakeholders

Shows them “how” at a level they can understand, raising questions
about whether it meets their needs

Defines constraints on implementation
Design decisions form “load-bearing walls” of application

Dictates organizational structure
Teams work on different components

Inhibits or enables quality attributes
Similar to design patterns

Supports predicting cost, quality, and schedule
Typically by predicting information for each component

Aids in so�ware evolution
Reason about cost, design, and effect of changes

Aids in prototyping
Can implement architectural skeleton early

KAZMAN ET AL. 2012KAZMAN ET AL. 2012

3 . 4

https://www.oreilly.com/library/view/software-architecture-in/9780132942799/?ar

CASE STUDY: TWITTERCASE STUDY: TWITTER

3 . 5

Source and additional reading: Raffi. Twitter Blog, 2013

Speaker notes

New Tweets per second record, and how!

https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html

TWITTER - CACHING ARCHITECTURETWITTER - CACHING ARCHITECTURE

3 . 6

Running one of the world’s largest Ruby on Rails installations
200 engineers
Monolithic: managing raw database, memcache, rendering the site, and * presenting the public APIs in one
codebase
Increasingly difficult to understand system; organizationally challenging to manage and parallelize engineering
teams
Reached the limit of throughput on our storage systems (MySQL); read and write hot spots throughout our
databases
Throwing machines at the problem; low throughput per machine (CPU + RAM limit, network not saturated)
Optimization corner: trading off code readability vs performance

Speaker notes

TWITTER'S REDESIGN GOALSTWITTER'S REDESIGN GOALS
Performance

Improve median latency; lower outliers
Reduce number of machines 10x

Reliability
Isolate failures

Maintainability
"We wanted cleaner boundaries with “related” logic being in one
place": encapsulation and modularity at the systems level (rather
than at the class, module, or package level)

Modifiability
Quicker release of new features: "run small and empowered
engineering teams that could make local decisions and ship user-
facing changes, independent of other teams"

Raffi. Twitter Blog, 2013New Tweets per second record, and how!

3 . 7

https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how.html

TWITTER: REDESIGNTWITTER: REDESIGN
DECISIONSDECISIONS

Ruby on Rails -> JVM/Scala
Monolith -> Microservices
RPC framework with monitoring,
connection pooling, failover
strategies, loadbalancing, ... built
in
New storage solution, temporal
clustering, "roughly sortable ids"
Data driven decision making

3 . 8

TWITTER CASE STUDY: KEY INSIGHTSTWITTER CASE STUDY: KEY INSIGHTS
Architectural decisions affect entire systems, not only individual modules
Abstract, different abstractions for different scenarios
Reason about quality attributes early
Make architectural decisions explicit
Question: Did the original architect make poor decisions?

3 . 9

ARCHITECTURALARCHITECTURAL
MODELING ANDMODELING AND

REASONINGREASONING

4 . 1

4 . 2

Map of Pittsburgh. Abstraction for navigation with cars.

Speaker notes

4 . 3

Cycling map of Pittsburgh. Abstraction for navigation with bikes and walking.

Speaker notes

4 . 4

Fire zones of Pittsburgh. Various use cases, e.g., for city planners.

Speaker notes

ANALYSIS-SPECIFIC ABSTRACTIONSANALYSIS-SPECIFIC ABSTRACTIONS
All maps were abstractions of the same real-world construct
All maps were created with different goals in mind

Different relevant abstractions
Different reasoning opportunities

Architectural models are specific system abstractions, for reasoning about
specific qualities
No uniform notation

4 . 5

WHAT CAN WE REASON ABOUT?WHAT CAN WE REASON ABOUT?

4 . 6

WHAT CAN WE REASON ABOUT?WHAT CAN WE REASON ABOUT?

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. " " ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

The Google file system.

4 . 7

https://ai.google/research/pubs/pub51.pdf

Scalability through redundancy and replication; reliability wrt to single points of failure; performance on edges; cost

Speaker notes

MODELING RECOMMENDATIONSMODELING RECOMMENDATIONS
Use notation suitable for analysis
Document meaning of boxes and edges in legend
Graphical or textual both okay; whiteboard sketches o�en sufficient
Formal notations available

4 . 8

CASE STUDY: AUGMENTEDCASE STUDY: AUGMENTED
REALITY TRANSLATIONREALITY TRANSLATION

5 . 1

Image:

Speaker notes

https://pixabay.com/photos/nightlife-republic-of-korea-jongno-2162772/

https://pixabay.com/photos/nightlife-republic-of-korea-jongno-2162772/

CASE STUDY: AUGMENTED REALITY TRANSLATIONCASE STUDY: AUGMENTED REALITY TRANSLATION

5 . 2

CASE STUDY: AUGMENTED REALITY TRANSLATIONCASE STUDY: AUGMENTED REALITY TRANSLATION

5 . 3

Consider you want to implement an instant translation service similar toGoogle translate, but run it on embedded
hardware in glasses as an augmented reality service.

Speaker notes

QUALITIES OF INTEREST?QUALITIES OF INTEREST?

5 . 4

ARCHITECTURAL DECISION:ARCHITECTURAL DECISION:
SELECTING AI TECHNIQUESSELECTING AI TECHNIQUES

What AI techniques to use and why? Tradeoffs?

6

Relate back to previous lecture about AI technique tradeoffs, including for example Accuracy Capabilities (e.g.
classification, recommendation, clustering…) Amount of training data needed Inference latency Learning latency;
incremental learning? Model size Explainable? Robust?

Speaker notes

ARCHITECTURAL DECISION:ARCHITECTURAL DECISION:
WHERE SHOULD THEWHERE SHOULD THE

MODEL LIVE?MODEL LIVE?

7 . 1

WHERE SHOULD THEWHERE SHOULD THE
MODEL LIVE?MODEL LIVE?

Glasses
Phone
Cloud

What qualities are relevant for the
decision?

7 . 2

Trigger initial discussion

Speaker notes

CONSIDERATIONSCONSIDERATIONS
How much data is needed as input for the model?
How much output data is produced by the model?
How fast/energy consuming is model execution?
What latency is needed for the application?
How big is the model? How o�en does it need to be updated?
Cost of operating the model? (distribution + execution)
Opportunities for telemetry?
What happens if users are offline?

7 . 3

EXERCISE: LATENCY AND BANDWIDTH ANALYSIS OFEXERCISE: LATENCY AND BANDWIDTH ANALYSIS OF
AR TRANSLATIONAR TRANSLATION

1. Identify key components of a solution and their interactions

2. Estimate latency and bandwidth requirements between components

3. Discuss tradeoffs among different deployment models

7 . 4

Identify at least OCR and Translation service as two AI components in a larger system. Discuss which system
components are worth modeling (e.g., rendering, database, support forum). Discuss how to get good estimates for
latency and bandwidth.

Some data: 200ms latency is noticable as speech pause; 20ms is perceivable as video delay, 10ms as haptic delay;
5ms referenced as cybersickness threshold for virtual reality 20ms latency might be acceptable

bluetooth latency around 40ms to 200ms

bluetooth bandwidth up to 3mbit, wifi 54mbit, video stream depending on quality 4 to 10mbit for low to medium quality

google glasses had 5 megapixel camera, 640x360 pixel screen, 1 or 2gb ram, 16gb storage

Speaker notes

WHEN WOULD ONE USE THE FOLLOWINGWHEN WOULD ONE USE THE FOLLOWING
DESIGNS?DESIGNS?

Static intelligence in the product
Client-side intelligence
Server-centric intelligence
Back-end cached intelligence
Hybrid models

7 . 5

From the reading:

Static intelligence in the product
difficult to update
good execution latency
cheap operation
offline operation
no telemetry to evaluate and improve

Client-side intelligence
updates costly/slow, out of sync problems
complexity in clients
offline operation, low execution latency

Server-centric intelligence
latency in model execution (remote calls)
easy to update and experiment
operation cost
no offline operation

Back-end cached intelligence
precomputed common results
fast execution, partial offline
saves bandwidth, complicated updates

Hybrid models

Speaker notes

MORE CONSIDERATIONSMORE CONSIDERATIONS
Coupling of ML pipeline parts
Coupling with other parts of the system
Ability for different developers and analysts to collaborate
Support online experiments
Ability to monitor

7 . 6

ARCHITECTURAL DECISION:ARCHITECTURAL DECISION:
TELEMETRYTELEMETRY

REQUIREMENTSREQUIREMENTS

8 . 1

TELEMETRY DESIGNTELEMETRY DESIGN
How to evaluate mistakes in production?

8 . 2

Discuss strategies to determine accuracy in production. What kind of telemetry needs to be collected?

Speaker notes

THE RIGHT AND RIGHT AMOUNT OF TELEMETRYTHE RIGHT AND RIGHT AMOUNT OF TELEMETRY
Purpose:

Monitor operation
Monitor mistakes (e.g., accuracy)
Improve models over time (e.g., detect new features)

Challenges:

too much data
no/not enough data
hard to measure, poor proxy measures
rare events
cost
privacy

8 . 3

TELEMETRY TRADEOFFSTELEMETRY TRADEOFFS
What data to collect? How much? When?

Estimate data volume and possible bottlenecks in system.

8 . 4

Discuss alternatives and their tradeoffs. Draw models as suitable.

Some data for context: Full-screen png screenshot on Pixel 2 phone (1080x1920) is about 2mb (2 megapixel); Google
glasses had a 5 megapixel camera and a 640x360 pixel screen, 16gb of storage, 2gb of RAM. Cellar cost are about
$10/GB.

Speaker notes

RELATED: COST OF DATA AND FEATURERELATED: COST OF DATA AND FEATURE
ENGINEERINGENGINEERING

How much data do we acquire for training and evaluating models?
What data sources at what scale and latency (considering engineering cost,
storage cost, processing cost, license cost, ...)
Is it worth investing more time in feature engineering? What if additional
data sources are needed?
What is the cost for cleaning, preprocessing the data and the value of the
additional accuracy?

8 . 5

ARCHITECTURAL DECISION:ARCHITECTURAL DECISION:
INDEPENDENT MODELINDEPENDENT MODEL

SERVICESERVICE
Microservice architecture:

Model Inference and Model Learning as a RESTful Service?

9 . 1

COUPLING AND CHANGEABILITYCOUPLING AND CHANGEABILITY
What's the interface between the AI component and the rest of the system?

Learning data and process
Inference API

Where does feature extraction happen?
Provide raw data (images, user profile, all past purchases) to service,
grant access to shared database, or provide feature vector?
Cost of feature extraction? Who bears the cost?
Versioned interface?

Coupling to other models? Direct coupling to data sources (e.g., files,
databases)? Expected formats for raw data (e.g., image resolution)?
Coupling to telemetry?

9 . 2

MODEL SERVICE APIMODEL SERVICE API
Consider encapsulating the model as a microservice. Sketch a (REST) API.

9 . 3

FUTURE-PROOFING AN APIFUTURE-PROOFING AN API
Anticipating and encapsulating change

What parts around the model service are likely to change?
Rigid vs flexible data formats?

Versioning of APIs
Version numbers vs immutable services?
Expecting to run multiple versions in parallel? Implications for
learning and evolution?

9 . 4

ROBUSTNESSROBUSTNESS
Redundancy for availability?
Load balancer for scalability?
Can mistakes be isolated?

Local error handling?
Telemetry to isolate errors to component?

Logging and log analysis for what qualities?

9 . 5

ARCHITECTURAL DECISION:ARCHITECTURAL DECISION:
UPDATING MODELSUPDATING MODELS

Design for change!
Models are rarely static outside the lab
Data dri�, feedback loops, new features, new requirements
When and how to update models?
How to version? How to avoid mistakes?

10 . 1

RISK OF STALE MODELSRISK OF STALE MODELS
What could happen if models become stale?

Risk: Discuss dri�, adversarial interactions, feedback loops

10 . 2

UPDATE REQUIREMENTS OR GOALSUPDATE REQUIREMENTS OR GOALS
Estimate the required update frequency and the related cost regarding training,

data transfer, etc.

10 . 3

Discuss how frequently the involved models need to be updated. Are static models acceptable? Identify what
information to collect and estimate the relevant values.

Speaker notes

OUTLOOK: BIG DATA DESIGNSOUTLOOK: BIG DATA DESIGNS
Stream + Batch Processing

10 . 4

ARCHITECTURAL STYLES /ARCHITECTURAL STYLES /
TACTICS / DESIGNTACTICS / DESIGN

PATTERNS FOR AI ENABLEDPATTERNS FOR AI ENABLED
SYSTEMSSYSTEMS

(no standardization, yet)

11 . 1

ARCHITECTURES AND PATTERNSARCHITECTURES AND PATTERNS
The Big Ass Script Architecture
Decoupled multi-tiered architecture (data vs data analysis vs reporting;
separate business logic from ML)
Microservice architecture (multiple learning and inference services)
Gateway Routing Architecture

Pipelines
Data lake, lambda architecture
Reuse between training and serving pipelines
Continuous deployment, ML versioning, pipeline testing

Daniel Smith. " ." TheoryLane Blog Post. 2017.
Washizaki, Hironori, Hiromu Uchida, Foutse Khomh, and Yann-Gaël Guéhéneuc. "

." Dra�, 2019

Exploring Development Patterns in Data Science
Machine Learning

Architecture and Design Patterns

11 . 2

https://www.theorylane.com/2017/10/20/some-development-patterns-in-data-science/
http://www.washi.cs.waseda.ac.jp/wp-content/uploads/2019/12/IEEE_Software_19__ML_Patterns.pdf

ANTI-PATTERNSANTI-PATTERNS
Big Ass Script Architecture
Dead Experimental Code Paths
Glue code
Multiple Language Smell
Pipeline Jungles
Plain-Old Datatype Smell
Undeclared Consumers

Washizaki, Hironori, Hiromu Uchida, Foutse Khomh, and Yann-Gaël Guéhéneuc. "
." Dra�, 2019

Sculley, David, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary,
Michael Young, Jean-Francois Crespo, and Dan Dennison. "

." In Advances in neural information processing systems, pp. 2503-2511. 2015.

Machine Learning
Architecture and Design Patterns

Hidden technical debt in machine learning
systems

11 . 3

http://www.washi.cs.waseda.ac.jp/wp-content/uploads/2019/12/IEEE_Software_19__ML_Patterns.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

AI AS A SERVICEAI AS A SERVICE
Third-Party AI Components in the Cloud

AI Components as Microservices

12 . 1

READYMADE AI COMPONENTS IN THE CLOUDREADYMADE AI COMPONENTS IN THE CLOUD
Data Infrastructure

Large scale data storage, databases, stream (MongoDB, Bigtable,
Kafka)

Data Processing
Massively parallel stream and batch processing (Sparks, Hadoop, ...)
Elastic containers, virtual machines (docker, AWS lambda, ...)

AI Tools
Notebooks, IDEs, Visualization
Learning Libraries, Frameworks (tensorflow, torch, keras, ...)

Models
Image, face, and speech recognition, translation
Chatbots, spell checking, text analytics
Recommendations, knowledge bases

12 . 2

12 . 3

BUILD VS BUYBUILD VS BUY
Hardware, so�ware, models?

12 . 4

Discuss privacy implications

Speaker notes

REFLECTIONREFLECTION
Qualities of interest? Important design tradeoffs? Decisions?

13

SUMMARYSUMMARY
So�ware architecture is an established discipline to reason about design
alternatives
Understand relevant quality goals
Problem-specific modeling and analysis: Gather estimates, consider design
alternatives, make tradeoffs explicit
Examples of important design decision:

modeling technique to use
where to deploy the model
how and how much telemetry to collect
whether and how to modularize the model service
when and how to update models
build vs buy, cloud resources

14

CASE STUDY 2: UBER SURGECASE STUDY 2: UBER SURGE
PREDICTIONPREDICTION

15 . 1

Consider you work at Uber and want to predict where rider demand is going to be high.

Speaker notes

QUALITIES OF INTEREST?QUALITIES OF INTEREST?

15 . 2

15 . 3

WHERE SHOULD THEWHERE SHOULD THE
MODEL LIVE?MODEL LIVE?

Car
Phone
Cloud

What qualities are relevant for the
decision?

15 . 4

Trigger initial discussion

Speaker notes

TELEMETRY DESIGNTELEMETRY DESIGN
How to evaluate mistakes in production?

17-445 So�ware Engineering for AI-Enabled Systems, Christian Kaestner
15 . 5

