
MANAGING ANDMANAGING AND
PROCESSING LARGEPROCESSING LARGE

DATASETSDATASETS
Christian Kaestner

Required reading: Martin Kleppmann. . OReilly. 2017. Chapter 1Designing Data-Intensive Applications

1

https://dataintensive.net/

LEARNING GOALSLEARNING GOALS
Organize different data management solutions and their tradeoffs
Explain the tradeoffs between batch processing and stream processing and
the lambda architecture
Recommend and justify a design and corresponding technologies for a given
system

2

CASE STUDYCASE STUDY

3 . 1

Discuss possible architecture and when to predict (and update)
in may 2017: 500M users, uploading 1.2billion photos per day (14k/sec)
in Jun 2019 1 billion users

Speaker notes

"ZOOM ADDING CAPACITY""ZOOM ADDING CAPACITY"

3 . 2

DATA MANAGEMENT ANDDATA MANAGEMENT AND
PROCESSING IN ML-PROCESSING IN ML-
ENABLED SYSTEMSENABLED SYSTEMS

4 . 1

KINDS OF DATAKINDS OF DATA
Training data
Input data
Telemetry data
(Models)

all potentially with huge total volumes and high throughput

need strategies for storage and processing

4 . 2

DATA MANAGEMENT AND PROCESSING IN ML-DATA MANAGEMENT AND PROCESSING IN ML-
ENABLED SYSTEMSENABLED SYSTEMS

Store, clean, and update training data
Learning process reads training data, writes model
Prediction task (inference) on demand or precomputed
Individual requests (low/high volume) or large datasets?

O�en both learning and inference data heavy, high volume tasks

4 . 3

DISTRIBUTED XDISTRIBUTED X
Distributed data cleaning
Distributed feature extraction
Distributed learning
Distributed large prediction tasks
Incremental predictions
Distributed logging and telemetry

4 . 4

SCALING COMPUTATIONSSCALING COMPUTATIONS

Efficent Algorithms Faster Machines More Machines

4 . 5

RELIABILITY AND SCALABILITY CHALLENGES IN AI-RELIABILITY AND SCALABILITY CHALLENGES IN AI-
ENABLED SYSTEMS?ENABLED SYSTEMS?

4 . 6

DISTRIBUTED SYSTEMS AND AI-ENABLED SYSTEMSDISTRIBUTED SYSTEMS AND AI-ENABLED SYSTEMS
Learning tasks can take substantial resources
Datasets too large to fit on single machine
Nontrivial inference time, many many users
Large amounts of telemetry
Experimentation at scale
Models in safety critical parts
Mobile computing, edge computing, cyber-physical systems

4 . 7

DATA STORAGE BASICSDATA STORAGE BASICS
Relational vs document storage
1:n and n:m relations
Storage and retrieval, indexes
Query languages and optimization

5 . 1

RELATIONAL DATA MODELSRELATIONAL DATA MODELS
user_id Name Email dpt

1 Christian kaestner@cs. 1

2 Eunsuk eskang@cmu. 1

2 Tom ... 2

dpt_id Name Address

1 ISR ...

2 CSD ...

select d.name from user u, dpt d where u.dpt=d.dpt_id

5 . 2

DOCUMENT DATA MODELSDOCUMENT DATA MODELS
{
 "id": 1,
 "name": "Christian",
 "email": "kaestner@cs.",
 "dpt": [
 {"name": "ISR", "address": "..."}
],
 "other": { ... }
}

db.getCollection('users').find({"name": "Christian"})

5 . 3

LOG FILES, UNSTRUCTURED DATALOG FILES, UNSTRUCTURED DATA
2020-06-25T13:44:14,601844,GET /data/m/goyas+ghosts+2006/17.mpg
2020-06-25T13:44:14,935791,GET /data/m/the+big+circus+1959/68.mp
2020-06-25T13:44:14,557605,GET /data/m/elvis+meets+nixon+1997/17
2020-06-25T13:44:14,140291,GET /data/m/the+house+of+the+spirits+
2020-06-25T13:44:14,425781,GET /data/m/the+theory+of+everything+
2020-06-25T13:44:14,773178,GET /data/m/toy+story+2+1999/59.mpg
2020-06-25T13:44:14,901758,GET /data/m/ignition+2002/14.mpg
2020-06-25T13:44:14,911008,GET /data/m/toy+story+3+2010/46.mpg

5 . 4

TRADEOFFSTRADEOFFS

5 . 5

DATA ENCODINGDATA ENCODING
Plain text (csv, logs)
Semi-structured, schema-free (JSON, XML)
Schema-based encoding (relational, Avro, ...)
Compact encodings (protobuffer, ...)

5 . 6

DISTRIBUTED DATADISTRIBUTED DATA
STORAGESTORAGE

6 . 1

REPLICATION VS PARTITIONINGREPLICATION VS PARTITIONING

6 . 2

PARTITIONINGPARTITIONING
Divide data:

Horizontal partitioning: Different rows in different tables; e.g., movies by
decade, hashing o�en used
Vertical partitioning: Different columns in different tables; e.g., movie title
vs. all actors

Tradeoffs?

Client

Frontend

Client

Frontend

Database West Database East Database Europe

6 . 3

REPLICATION STRATEGIES: LEADERS ANDREPLICATION STRATEGIES: LEADERS AND
FOLLOWERSFOLLOWERS

Client

Frontend

Primary Database

Client

Frontend

Backup DB 1 Backup DB 2

6 . 4

REPLICATION STRATEGIES: LEADERS ANDREPLICATION STRATEGIES: LEADERS AND
FOLLOWERSFOLLOWERS

Write to leader
propagated synchronously or async.

Read from any follower
Elect new leader on leader outage; catchup on follower outage

Built in model of many databases (MySQL, MongoDB, ...)

Benefits and Drawbacks?

6 . 5

MULTI-LEADER REPLICATIONMULTI-LEADER REPLICATION
Scale write access, add redundancy
Requires coordination among leaders

Resolution of write conflicts
Offline leaders (e.g. apps), collaborative editing

6 . 6

LEADERLESS REPLICATIONLEADERLESS REPLICATION
Client writes to all replica
Read from multiple replica (quorum required)

Repair on reads, background repair process
Versioning of entries (clock problem)
e.g. Amazon Dynamo, Cassandra, Voldemort

Client

Database Database2 Database3

Client2

6 . 7

TRANSACTIONSTRANSACTIONS
Multiple operations conducted as one, all or nothing
Avoids problems such as

dirty reads
dirty writes

Various strategies, including locking and optimistic+rollback
Overhead in distributed setting

6 . 8

DATA PROCESSINGDATA PROCESSING
(OVERVIEW)(OVERVIEW)

Services (online)
Responding to client requests as they come in
Evaluate: Response time

Batch processing (offline)
Computations run on large amounts of data
Takes minutes to days
Typically scheduled periodically
Evaluate: Throughput

Stream processing (near real time)
Processes input events, not responding to requests
Shortly a�er events are issued

7

BATCH PROCESSINGBATCH PROCESSING

8 . 1

LARGE JOBSLARGE JOBS
Analyzing TB of data, typically distributed storage
Filtering, sorting, aggregating
Producing reports, models, ...

cat /var/log/nginx/access.log |
 awk '{print $7}' |
 sort |
 uniq -c |
 sort -r -n |
 head -n 5

8 . 2

DISTRIBUTED BATCH PROCESSINGDISTRIBUTED BATCH PROCESSING
Process data locally at storage
Aggregate results as needed
Separate pluming from job logic

MapReduce as common framework

Image Source: Ville Tuulos (CC BY-SA 3.0)

8 . 3

MAPREDUCE -- FUNCTIONAL PROGRAMMING STYLEMAPREDUCE -- FUNCTIONAL PROGRAMMING STYLE
Similar to shell commands: Immutable inputs, new outputs, avoid side
effects
Jobs can be repeated (e.g., on crashes)
Easy rollback
Multiple jobs in parallel (e.g., experimentation)

8 . 4

MACHINE LEARNING AND MAPREDUCEMACHINE LEARNING AND MAPREDUCE

8 . 5

Useful for big learning jobs, but also for feature extraction

Speaker notes

DATAFLOW ENGINES (SPARK, TEZ, FLINK, ...)DATAFLOW ENGINES (SPARK, TEZ, FLINK, ...)
Single job, rather than subjobs
More flexible than just map and reduce
Multiple stages with explicit dataflow between them
O�en in-memory data
Pluming and distribution logic separated

8 . 6

KEY DESIGN PRINCIPLE: DATA LOCALITYKEY DESIGN PRINCIPLE: DATA LOCALITY

Data o�en large and distributed, code small
Avoid transfering large amounts of data
Perform computation where data is stored (distributed)
Transfer only results as needed

"The map reduce way"

Moving Computation is Cheaper than Moving Data --
Hadoop Documentation

8 . 7

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#aMoving_Computation_is_Cheaper_than_Moving_Data

STREAM PROCESSINGSTREAM PROCESSING
Event-based systems, message passing style, publish subscribe

9 . 1

MESSAGING SYSTEMSMESSAGING SYSTEMS
Multiple producers send messages to topic
Multiple consumers can read messages
Decoupling of producers and consumers
Message buffering if producers faster than consumers
Typically some persistency to recover from failures
Messages removed a�er consumption or a�er timeout
With or without central broker
Various error handling strategies (acknowledgements, redelivery, ...)

9 . 2

COMMON DESIGNSCOMMON DESIGNS
Like shell programs: Read from stream, produce output in other stream. Loose

coupling

stream:issues

stream:projects_with_issues

stream:deleted_issues_confirmedstream:locked_issues

stream:deleted_issuesGHstream:modified_issues

stream:casey_slugs

mongoDb

CheckDeletedIssues

IssueDownloader

DeletedIssuesPrinter

deleted_issues.html

DetectDeletedIssues

mysql

DetectDeletedIssuesGht/TODO

mongoDb

DetectLockedIssues

DetectModifiedComments

MongoWriter

mongoDb

DetectDeletedComments

stream:deleted_commentsGH

mysql mongoDB

CheckDeletedComments

stream:deleted_comments_confirmed

GitHub

GitHub GitHub

mongoDb

9 . 3

STREAM QUERIESSTREAM QUERIES
Processing one event at a time independently
vs incremental analysis over all messages up to that point
vs floating window analysis across recent messages
Works well with probabilistic analyses

9 . 4

CONSUMERSCONSUMERS
Multiple consumers share topic for scaling and load balancing
Multiple consumers read same message for different work
Partitioning possible

9 . 5

DESIGN QUESTIONSDESIGN QUESTIONS
Message loss important? (at-least-once processing)
Can messages be processed repeatedly (at-most-once processing)
Is the message order important?
Are messages still needed a�er they are consumed?

9 . 6

STREAM PROCESSING AND AI-ENABLED SYSTEMS?STREAM PROCESSING AND AI-ENABLED SYSTEMS?

9 . 7

Process data as it arrives, prepare data for learning tasks, use models to annotate data, analytics

Speaker notes

EVENT SOURCINGEVENT SOURCING
Append only databases
Record edit events, never mutate data
Compute current state from all past events, can reconstruct old state
For efficiency, take state snapshots
Similar to traditional database logs

createUser(id=5, name="Christian", dpt="SCS")
updateUser(id=5, dpt="ISR")
deleteUser(id=5)

9 . 8

BENEFITS OF IMMUTABILITY (EVENT SOURCING)BENEFITS OF IMMUTABILITY (EVENT SOURCING)
All history is stored, recoverable
Versioning easy by storing id of latest record
Can compute multiple views
Compare git

On a shopping website, a customer may add an item to their cart and then remove it
again. Although the second event cancels out the first event from the point of view of
order fulfillment, it may be useful to know for analytics purposes that the customer

was considering a particular item but then decided against it. Perhaps they will
choose to buy it in the future, or perhaps they found a substitute. This information is

recorded in an event log, but would be lost in a database that deletes items when
they are removed from the cart.

Source: Greg Young. . Code on the Beach 2014 via Martin Kleppmann. Designing Data-
Intensive Applications. OReilly. 2017.

CQRS and Event Sourcing

9 . 9

https://www.youtube.com/watch?v=JHGkaShoyNs

DRAWBACKS OF IMMUTABLE DATADRAWBACKS OF IMMUTABLE DATA

9 . 10

Storage overhead, extra complexity of deriving state
Frequent changes may create massive data overhead
Some sensitive data may need to be deleted (e.g., privacy, security)

Speaker notes

THE LAMBDATHE LAMBDA
ARCHITECTUREARCHITECTURE

10 . 1

https://commons.wikimedia.org/wiki/File:Diagram_of_Lambda_Architecture_(named_components).png

LAMBDA ARCHITECTURE: 3 LAYER STORAGELAMBDA ARCHITECTURE: 3 LAYER STORAGE
ARCHITECTUREARCHITECTURE

Batch layer: best accuracy, all data, recompute periodically
Speed layer: stream processing, incremental updates, possibly
approximated
Serving layer: provide results of batch and speed layers to clients

Assumes append-only data
Supports tasks with widely varying latency
Balance latency, throughput and fault tolerance

10 . 2

LAMBDA ARCHITECTURE AND MACHINE LEARNINGLAMBDA ARCHITECTURE AND MACHINE LEARNING

Learn accurate model in batch job
Learn incremental model in stream processor

10 . 3

DATA LAKEDATA LAKE
Trend to store all events in raw form (no consistent schema)
May be useful later
Data storage is comparably cheap

10 . 4

REASONING ABOUT DATAFLOWSREASONING ABOUT DATAFLOWS
Many data sources, many outputs, many copies

Which data is derived from what other data and how?

Is it reproducible? Are old versions archived?

How do you get the right data to the right place in the right format?

Plan and document data flows

10 . 5

stream:issues

stream:projects_with_issues

stream:deleted_issues_confirmedstream:locked_issues

stream:deleted_issuesGHstream:modified_issues

stream:casey_slugs

mongoDb

CheckDeletedIssues

IssueDownloader

DeletedIssuesPrinter

deleted_issues.html

DetectDeletedIssues

mysql

DetectDeletedIssuesGht/TODO

mongoDb

DetectLockedIssues

DetectModifiedComments

MongoWriter

mongoDb

DetectDeletedComments

stream:deleted_commentsGH

mysql mongoDB

CheckDeletedComments

stream:deleted_comments_confirmed

GitHub

GitHub GitHub

mongoDb

10 . 6

Molham Aref " "Business Systems with Machine Learning

10 . 7

https://youtu.be/_bvrzYOA8dY?t=1452
https://www.youtube.com/watch?v=_bvrzYOA8dY

EXCURSION: ETL TOOLSEXCURSION: ETL TOOLS
Extract, tranform, load

11 . 1

DATA WAREHOUSING (OLAP)DATA WAREHOUSING (OLAP)
Large denormalized databases with materialized views for large scale
reporting queries
e.g. sales database, queries for sales trends by region

Read-only except for batch updates: Data from OLTP systems loaded
periodically, e.g. over night

11 . 2

Image source:

Speaker notes

https://commons.wikimedia.org/wiki/File:Data_Warehouse_Feeding_Data_Mart.jpg

https://commons.wikimedia.org/wiki/File:Data_Warehouse_Feeding_Data_Mart.jpg

ETL: EXTRACT, TRANSFORM, LOADETL: EXTRACT, TRANSFORM, LOAD
Transfer data between data sources, o�en OLTP -> OLAP system
Many tools and pipelines

Extract data from multiple sources (logs, JSON, databases),
snapshotting
Transform: cleaning, (de)normalization, transcoding, sorting, joining
Loading in batches into database, staging

Automation, parallelization, reporting, data quality checking, monitoring,
profiling, recovery
O�en large batch processes
Many commercial tools

Examples of tools in several lists

11 . 3

https://www.softwaretestinghelp.com/best-etl-tools/
https://www.scrapehero.com/best-data-management-etl-tools/

11 . 4

https://www.xplenty.com/

Molham Aref " "Business Systems with Machine Learning

11 . 5

https://youtu.be/_bvrzYOA8dY?t=1452
https://www.youtube.com/watch?v=_bvrzYOA8dY

EXCURSION: PARAMETEREXCURSION: PARAMETER
SERVER ARCHITECTURESERVER ARCHITECTURE

Li, Mu, et al. " ." OSDI, 2014.Scaling distributed machine learning with the parameter server

12 . 1

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

RECALL: BACKPROPAGATIONRECALL: BACKPROPAGATION

12 . 2

TRAINING AT SCALE IS CHALLENGINGTRAINING AT SCALE IS CHALLENGING
2012 at Google: 1TB-1PB of training data, 109 − 1012 parameters
Need distributed training; learning is o�en a sequential problem
Just exchanging model parameters requires substantial network bandwidth
Fault tolerance essential (like batch processing), add/remove nodes
Tradeoff between convergence rate and system efficiency

Li, Mu, et al. " ." OSDI, 2014.Scaling distributed machine learning with the parameter server

12 . 3

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

DISTRIBUTED GRADIENT DESCENTDISTRIBUTED GRADIENT DESCENT

12 . 4

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

PARAMETER SERVER ARCHITECTUREPARAMETER SERVER ARCHITECTURE

12 . 5

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

Multiple parameter servers that each only contain a subset of the parameters, and multiple workers that each require
only a subset of each

Ship only relevant subsets of mathematical vectors and matrices, batch communication

Resolve conflicts when multiple updates need to be integrated (sequential, eventually, bounded delay)

Run more than one learning algorithm simulaneously

Speaker notes

SYSML CONFERENCESYSML CONFERENCE
Increasing interest in the systems aspects of machine learning

e.g., building large scale and robust learning infrastructure

https://mlsys.org/

12 . 6

https://mlsys.org/

COMPLEXITY OFCOMPLEXITY OF
DISTRIBUTED SYSTEMSDISTRIBUTED SYSTEMS

13 . 1

13 . 2

COMMON DISTRIBUTED SYSTEM ISSUESCOMMON DISTRIBUTED SYSTEM ISSUES
Systems may crash
Messages take time
Messages may get lost
Messages may arrive out of order
Messages may arrive multiple times
Messages may get manipulated along the way
Bandwidth limits
Coordination overhead
Network partition
...

13 . 3

TYPES OF FAILURE BEHAVIORSTYPES OF FAILURE BEHAVIORS
Fail-stop
Other halting failures
Communication failures

Send/receive omissions
Network partitions
Message corruption

Data corruption
Performance failures

High packet loss rate
Low throughput
High latency

Byzantine failures

13 . 4

COMMON ASSUMPTIONS ABOUT FAILURESCOMMON ASSUMPTIONS ABOUT FAILURES
Behavior of others is fail-stop
Network is reliable
Network is semi-reliable but asynchronous
Network is lossy but messages are not corrupt
Network failures are transitive
Failures are independent
Local data is not corrupt
Failures are reliably detectable
Failures are unreliably detectable

13 . 5

STRATEGIES TO HANDLE FAILURESSTRATEGIES TO HANDLE FAILURES
Timeouts, retry, backup services
Detect crashed machines (ping/echo, heartbeat)
Redundant + first/voting
Transactions

Do lost messages matter?
Effect of resending message?

13 . 6

TEST ERROR HANDLINGTEST ERROR HANDLING
Recall: Testing with stubs
Recall: Chaos experiments

13 . 7

PERFORMANCE PLANNINGPERFORMANCE PLANNING
AND ANALYSISAND ANALYSIS

14 . 1

PERFORMANCE PLANNING AND ANALYSISPERFORMANCE PLANNING AND ANALYSIS

Ideally architectural planning upfront

Identify key components and their interactions
Estimate performance parameters
Simulate system behavior (e.g., queuing theory)

Existing system: Analyze performance bottlenecks

Profiling of individual components
Performance testing (stress testing, load testing, etc)
Performance monitoring of distributed systems

14 . 2

PERFORMANCE ANALYSISPERFORMANCE ANALYSIS
What is the average waiting?
How many customers are waiting on average?
How long is the average service time?
What are the chances of one or more servers being idle?
What is the average utilization of the servers?

Early analysis of different designs for bottlenecks
Capacity planning

14 . 3

QUEUING THEORYQUEUING THEORY
Queuing theory deals with the analysis of lines where customers wait to
receive a service

Waiting at Quiznos
Waiting to check-in at an airport
Kept on hold at a call center
Streaming video over the net
Requesting a web service

A queue is formed when request for services outpace the ability of the
server(s) to service them immediately

Requests arrive faster than they can be processed (unstable queue)
Requests do not arrive faster than they can be processed but their
processing is delayed by some time (stable queue)

Queues exist because infinite capacity is infinitely expensive and excessive
capacity is excessively expensive

14 . 4

QUEUING THEORYQUEUING THEORY

14 . 5

ANALYSIS STEPS (ROUGHLY)ANALYSIS STEPS (ROUGHLY)
Identify system abstraction to analyze (typically architectural level, e.g.
services, but also protocols, datastructures and components, parallel
processes, networks)
Model connections and dependencies
Estimate latency and capacity per component (measurement and testing,
prior systems, estimates, …)
Run simulation/analysis to gather performance curves
Evaluate sensitivity of simulation/analysis to various parameters (‘what-if
questions’)

14 . 6

SIMULATION (E.G., JMT)SIMULATION (E.G., JMT)

G.Serazzi Ed. Performance Evaluation Modelling with JMT: learning by examples. Politecnico di Milano - DEI, TR
2008.09, 366 pp., June 2008 14 . 7

PROFILINGPROFILING
Mostly used during development phase in single components

14 . 8

PERFORMANCE TESTINGPERFORMANCE TESTING
Load testing: Assure handling of maximum expected load
Scalability testing: Test with increasing load
Soak/spike testing: Overload application for some time, observe stability
Stress testing: Overwhelm system resources, test graceful failure + recovery

Observe (1) latency, (2) throughput, (3) resource use
All automateable; tools like JMeter

14 . 9

PERFORMANCE MONITORING OF DISTRIBUTEDPERFORMANCE MONITORING OF DISTRIBUTED
SYSTEMSSYSTEMS

Source: https://blog.appdynamics.com/tag/fiserv/

http://localhost:1948/distprofiler.png
https://blog.appdynamics.com/tag/fiserv/

14 . 10

PERFORMANCE MONITORING OF DISTRIBUTEDPERFORMANCE MONITORING OF DISTRIBUTED
SYSTEMSSYSTEMS

Instrumentation of (Service) APIs
Load of various servers
Typically measures: latency, traffic, errors, saturation

Monitoring long-term trends
Alerting
Automated releases/rollbacks
Canary testing and A/B testing

14 . 11

17-445 So�ware Engineering for AI-Enabled Systems, Christian Kaestner

SUMMARYSUMMARY
Large amounts of data (training, inference, telemetry, models)
Distributed storage and computation for scalability
Common design patterns (e.g., batch processing, stream processing,
lambda architecture)
Design considerations: mutable vs immutable data
Distributed computing also in machine learning
Lots of tooling for data extraction, transformation, processing
Many challenges through distribution: failures, debugging, performance, ...

Recommended reading: Martin Kleppmann.
. OReilly. 2017.

Designing Data-Intensive
Applications

15

https://dataintensive.net/

