INFRASTRUCTURE QUALITY,
DEPLOYMENT, AND
OPERATIONS

Christian Kaestner

Required reading: Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for
ML Production Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

Recommended readings: Larysa Visengeriyeva. Machine Learning Operations - A Reading List, InnoQ 2020

https://research.google.com/pubs/archive/46555.pdf
https://ml-ops.org/content/references.html

LEARNING GOALS

Implement and automate tests for all parts of the ML pipeline
Understand testing opportunities beyond functional correctness
Automate test execution with continuous integration

Deploy a service for models using container infrastructure
Automate common configuration management tasks

Devise a monitoring strategy and suggest suitable components for
implementing it

Diagnose common operations problems

BEYOND MODEL AND DATA
QUALITY

POSSIBLE MISTAKES IN ML PIPELINES

- I e s . . - -
¢ Model Y Data~ & Data~ ¥ Data *= Feature = Model * Model Model Model
Requirements Collection Cleaning Labeling Engineering Training Evaluation Deployment Monitoring

Danger of "silent" mistakes in many phases

POSSIBLE MISTAKES IN ML PIPELINES

Danger of "silent" mistakes in many phases:

e Dropped data after format changes

e Failure to push updated model into production

e Incorrect feature extraction

e Use of stale dataset, wrong data source

e Data source no longer available (e.g web API)

e Telemetry server overloaded

e Negative feedback (telemtr.) no longer sent from app
e Use of old model learning code, stale hyperparameter
e Data format changes between ML pipeline steps

EVERYTHING CAN BE TESTED?

Speaker notes

Many qualities can be tested beyond just functional correctness (for a specification). Examples: Performance, model
guality, data quality, usability, robustness, ... not all tests are equality easy to automate

TESTING STRATEGIES

e Performance
e Scalability

e Robustness

e Safety

e Security

e Extensibility

e Maintainability
e Usability

How to test for these? How automatable?

TEST AUTOMATION

FROM MANUAL TESTING TO CONTINUOUS
INTEGRATION

&« C i 8 https

My Reposito

% Build #17 - wyvernla: x

travis-ci.org

wyvernlang / wyvern ©

Build #1

works on Linux, so its O 1

As!

potanin autho

Download Log

Using wor worker-1inux-827f8498-1.bb. travis-ci.org:travis-1lin

Build system information

$ git clone --depth=5@ --branch-Simpleyvern-devel
$ jak_switcher use oraclejoks

Switching to Oracle JDK8 (java-8-oracle), JAVA HOME will be set to fusr/1ib,
-version

java version "1.8.8 31"

Java(TM) SE Runtime Environment (build 1.8.8_31-b13)

Java HotSpot(TM) 64-Bit Server VM (build 25.31-be7, mixed mode)

vm/java-8-oracle

$ java -Xm

~Xmx32m -version
$ cd tools
The command “cd tools® exited with 0.
$ ant test
Buildfile: /home/travis/build/wyvernlang/wyvern/tools/build.xml
copper-cempose - compil
[mkdir] Created dir
[Javac] /home/travis/build/s
was not set, defaulting to build

/home/travis/build/wyvernlang/wyvern/tools/copper-composer/bin

yvernlang/wyvern/tools/build.xml:18: warning: ‘includeantruntime’

ath=last; set to false for repeatable builds

scla

UNIT TEST, INTEGRATION TESTS, SYSTEM TESTS

y

Unit testing Integration testing System testing Acceptance
testing

(Demonstration)

Speaker notes
Software is developed in units that are later assembled. Accordingly we can distinguish different levels of testing.

Unit Testing - A unit is the "smallest" piece of software that a developer creates. It is typically the work of one
programmer and is stored in a single file. Different programming languages have different units: In C++ and Java the
unit is the class; in C the unit is the function; in less structured languages like Basic and COBOL the unit may be the
entire program.

Integration Testing - In integration we assemble units together into subsystems and finally into systems. It is possible for
units to function perfectly in isolation but to fail when integrated. For example because they share an area of the
computer memory or because the order of invocation of the different methods is not the one anticipated by the different
programmers or because there is a mismatch in the data types. Etc.

System Testing - A system consists of all of the software (and possibly hardware, user manuals, training materials, etc.)
that make up the product delivered to the customer. System testing focuses on defects that arise at this highest level of
integration. Typically system testing includes many types of testing: functionality, usability, security, internationalization
and localization, reliability and availability, capacity, performance, backup and recovery, portability, and many more.

Acceptance Testing - Acceptance testing is defined as that testing, which when completed successfully, will result in the
customer accepting the software and giving us their money. From the customer's point of view, they would generally like
the most exhaustive acceptance testing possible (equivalent to the level of system testing). From the vendor's point of
view, we would generally like the minimum level of testing possible that would result in money changing hands. Typical
strategic questions that should be addressed before acceptance testing are: Who defines the level of the acceptance
testing? Who creates the test scripts? Who executes the tests? What is the pass/fail criteria for the acceptance test?
When and how do we get paid?

ANATOMY OF A UNIT TEST

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {
public void testSanityTest()({
Graph g1 = new AdjacencylListGraph(10);

Vertex si1 new Vertex("A");
Vertex s2 new Vertex('"B");

assertEquals(true, gl.addVertex(sl)),
assertEquals(true, gl.addVertex(s2));
assertEquals(true, gl.addeEdge(sl, s2));
assertEquals(s2, gl.getNeighbors(s1)[0]);

INGREDIENTS TO A TEST

e Specification

e Controlled environment
e Testinputs (calls and parameters)
e Expected outputs/behavior (oracle)

UNIT TESTING PITFALLS

e Working code, failing tests
Smoke tests pass

Works on my (some) machine(s)
Tests break frequently

How to avoid?

HOW TO UNIT TEST COMPONENT WITH
DEPENDENCY ON OTHER CODE?

EXAMPLE: TESTING PARTS OF A SYSTEM

Client

Model learn() {

\ 4

Code

\ 4

Backend

Stream stream = openKafkaStream(...)

DataTable output = getData(testStream,
return Model.learn(output);

new DefaultCleaner())

EXAMPLE: USING TEST DATA

Test driver

DataTable getData(Stream stream,

void test() {

A

Code

A

Backend

DataCleaner cleaner) { ... }

Stream stream = openKafkaStream(...)
DataTable output = getData(testStream, new DefaultCleaner())
assert(output.length==10)

EXAMPLE: USING TEST DATA

Test driver

Code

A

Backend Interface

A

Mock Backend

A

DataTable getData(Stream stream, DataCleaner cleaner) { ... }

void test() {

Stream testStream = new Stream() {
int idx =

String[] data = [...]
public void connect() {
)

public String getNext(
return data[++1idx]
}
}

DataTable output = getData(testStream, new DefaultCleaner())
assert(output.length==10)

EXAMPLE: MOCKING A DATACLEANER OBJECT

DataTable getData(KafkaStream stream, DataCleaner cleaner) { ...

void test() {
DataCleaner dummyCleaner = new DataCleaner() {
boolean isValid(String row) { return true; }

¥
DataTable output = getData(testStream, dummyCleaner);

assert(output.length==10)

.11

EXAMPLE: MOCKING A DATACLEANER OBJECT

DataTable getData(KafkaStream stream, DataCleaner cleaner) { ...

void test() {
DataCleaner dummyCleaner = new DataCleaner() {
int counter = 0;
boolean isvValid(String row) {
counter++;
return counter!=3;

}
DataTable output = getData(testStream, dummyCleaner);

assert(output.length==9)

Mocking frameworks provide infrastructure for expressing such tests compactly.

.12

Client

Test driver

Code

7

Backend

A

Backend Interface

\b Mock Backend

TEST ERROR HANDLING

void test() {
DataTable data = new DataTable();

try {

Model m = learn(data);
Assert.fail();
} catch (NoDataException e) {

.14

Speaker notes

Code to test that the right exception is thrown

TESTING FOR ROBUSTNESS

manipulating the (controlled) environment: injecting errors into backend to test
error handling

DataTable getData(Stream stream, DataCleaner cleaner) { ... }

void test() {
Stream testStream = new Stream() {

public String getNext() {

if (++idx == 3) throw new IOException();
return data[++1idx];
b
¥
DataTable output = retry(getData(testStream, ...));
assert(output.length==10)

.15

TEST LOCAL ERROR HANDLING (MODULAR
PROTECTION)

void test() {
Stream testStream = new Stream() {
int idx = 0;
public void connect() {
if (++1idx < 3)
throw new IOException('"cannot establish connecti

}

public String getNext() { ... }

}

DatalLoader loader = new DatalLoader(testStream, new DefaultCl
ModelBuilder model = new ModelBuilder(loader, ...);

assert(model.accuracy > .91)

.16

Speaker notes

Test that errors are correctly handled within a module and do not leak

Packages T Coverage Report - All Packages

All

et sourceforge.cobertura.ant g SEwases i Dwernge B ETape Eomplexty
B ———— All Packages 55 T ey 2319
net.sourceforge cobertura.check

net.sourceforge. cobertura. coveragedal B — - f— _ a5 _ 1848
net.sourceforge cobertura. instrument net.sourceforge.cobertura. chieck g e _ ™ _ 2.429
net.sourceforge. cobertura. mer net.sourceforge cobertura coveragedata 13 HIA HiA 2.277
net sourceforge. cobertura.reporting net sourceforge. cobertura insirument 10 E - | = | azsnes [1.854
net sourceforge. cobertura. reporting. htr net sourceforge.cobertura merge - o _ o _ 55
net.snuroefnrgg.mbenura.remnim.htrl net.sourceforge cobertura reporting 3 T _ o _ 2.6682
net.sourceforge cobertura, reporting xm net sourceforge. cobertura.reporting himl 4 =1 [T 7 [4.444
net.sourceforge. cobertura, util " net.sourceforge.cobertura.reporting himi files - s7e [e2v [45

u . net sourceforge. cobertura reporting xml 1 1009 _ 5% _ 1524
¢ l— — net sourceforge cobertura, uti 9 s [| 2,892
All Packages ~ || somectherpackage - e [N WA 12
] Report generated by Cobertura 1.9 on 6/%/07 12:37 AM.

Classes

AntUtil (88%)

Archive (100%)

ArchiveUtil (B0%;)

BranchCoverageData (N/A)

CheckTask (0%)

ClassData (N/4)

Classlnstrumenter ($4%)

ClassPattern (100%)

CoberturaFile (73%)

CommandLineBuilder (96%)

CommonMatehingTask (88%)

ComplexityCalculator {100%)

ConfiqurationUtil (50%) j

CopyFiles (87%)

CoverageData (N/A)
CoverageDataContainer (N/A)
CoverageDataFileHandler (N/A)
CoverageRate (0%)

ExcludeClasses (100%)

EileFinder (96%)

EileLocker (0%
EirstPassMethodinstrumenter {100%)
HTMLReport (94%)
HasBeenlnstrumented (NAA)

Header (80%)

1OUtil (62%)

lgnore (100%)

lgnoreBranches (0%) -

1

.17

TESTABLE CODE

Think about testing when writing code

Unit testing encourages you to write testable code

Separate parts of the code to make them independently testable
Abstract functionality behind interface, make it replaceable

Test-Driven Development: A design and development method in which you
write tests before you write the code

INTEGRATION AND SYSTEM TESTS

y

Unit testing

Integration testing

System testing

Acceptance
testing

(Demonstration)

.19

INTEGRATION AND SYSTEM TESTS

Test larger units of behavior

Often based on use cases or user stories -- customer perspective

void gameTest() {
Poker game = new Poker();
Player p = new Player();
Player q = new Player();
game.shuffle(seed)
game.add(p);
game.add(q);

game.deal();

p.bet(100);

q.bet(100);

p.call();

q.fold();
assert(game.winner() == p);

.20

BUILD SYSTEMS & CONTINUOUS INTEGRATION

e Automate all build, analysis, test, and deployment steps from a command
line call

e Ensure all dependencies and configurations are defined

e |deally reproducible and incremental

e Distribute work for large jobs

e Track results

e Key Cl benefit: Tests are regularly executed, part of process

< Ch

s

% Build #17 - wyvernlz: x |

& https:

travis-ci.org/wy

Help

wyvernlang / wyvern

-

rernlang/

O oo

Build #17

SimpleWyvern-devel Asserting false (works on Linux, soits C

X= Remove Log 4= Download Log

Using worker: worker-linux-827f8498-1.bb.travis-ci.org:travis-linux-2

Build system information

$ git clone --depth=58 --branch=5impleWyvern-devel
§ jdk_switcher use oraclejdk8
Switching to Oracle JDK8 (java-8-oracle), JAVA_HOME will be set to fusr/lib/jvm/java-8-oracle

§ java -Xmx32m -wversion

java version "1.8.8_31"

Java(TM) SE Runtime Enviromment (build 1.8.8_31-bl3)

Java HotSpot(TM) 64-Bit Server VM (build 25.31-b@7, mixed mode)

§ javac -J-Xmx32m -version

javac 1.8.8_31
$ cd tools

The command "cd tools™ exited with 8.
§ ant test
Buildfile: /home/travis/build/wyvernlang/wyvern/tools/build.xml

copper-compose-compile:
[mkdir] Created dir: /home/travis/build/wyvernlang/wyvern/tools/copper-composer/bin
[javac] fhome/travis/build/wyvernlang/wyvern/tools/build.xml:18: warning: "includeamtruntime’

was not set, defaulting to build.sysclasspath=last; set to false for repeatable builds

TRACKING BUILD QUALITY

Track quality indicators over time, e.g.,

e Build time

* Test coverage

e Static analysis warnings

e Performance results

e Model quality measures

e Number of TODOs in source code

II!!i!:!!!!:!!!!!!!!EIIﬁg!I!!!!!!!IIIIIIIIIIIIIIIIIIIIIIIIIIIlE!IIIII

Jenkins Suisse Stop-tabac dev EMABLE AUTO REFRESH

4k Back to Dashboard

a Project Stop-tabac dev
|, Status

CI build
ﬁ Changes
ﬁ Workspace Disable Project
Test Result Trend
@ Build Now 140
Coverage Report
© Delete Project 120
’é Configure 0
Waorkspace £ 80
Ep Set Next Build Number 3
Y 60
.4 Duplicate Code]
Recent Changes 40
5 Coverage Report 20
[
E_ |] SLOCCount Latest Test Result (no failures) w o)
i 3 Y
Git Polling Log) .
D otin (just show failures) enlarge
73 Build History (rena) Permalinks - Coda Coverage
— Classes 45% Conditionals 74% Files 45% Lines 28% Packages B88%
@ #977 Aug 27, 2012 4:37:27 PM Last build (#977), 3 min 17 sec ago 100 A
Last stable build (#5977}, 3 min 17 sec ago 50 / \
@ #438 Jun 28, 2012 8:47:42 AM [B] s Last successful build (#977), 3 min 17 sec aqo B0 | - ,/
o
@ #426 Jun 26,2012 1:39:35PM [E] 0 s
&0 P Classes
@ #345 Jun 19, 2012 9:02:20 AM [- / — Conditionals
@ #263 Jun6, 2013 9:14:42PM [&] 40 // // ~— Files
@ #210 May 31, 2012 £:42:29 aM [&] i Yy Lines
Y . He *H
20 I e | — Packages
@ #171 May 23, 2012 9:58:18 PM [&] 10 1Sy g
@ #90 May 15, 2012 11:49:41 AM [&] D: E o w @ @ r~
: ¥ E & % 3 i E
) RSS for all) RSS for failures

SLOCCount Trend

#210
#263
#426
#438
#9377

—
P
—
3*

https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/

E Help us localize this page Page generated: Aug 27, 2012 4:40:45 PM

Jenkins ver. 1.470

Source: https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/

.24

https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/
https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/

TEST MONITORING

* |nject/simulate faulty behavior
e Mock out notification service used by monitoring
e Assert notification

class MyNotificationService extends NotificationService {
public boolean receivedNotification = false;
public void sendNotification(String msg) { receivedNotificat

void test() {
Server s = getServer();
MyNotificationService n = new MyNotificationService();

Monitor m = new Monitor(s, n);
s.stop();

s.request();

s.request();

walit();
assert(n.receivedNotification);

.25

TEST MONITORING IN PRODUCTION

e Like fire drills (manual tests may be okay!)
e Manual tests in production, repeat regularly
e Actually take down service or trigger wrong signal to monitor

CHAOS TESTING

http://principlesofchaos.org

.27

http://principlesofchaos.org/

Speaker notes

Chaos Engineering is the discipline of experimenting on a distributed system in order to build confidence in the system’s
capability to withstand turbulent conditions in production. Pioneered at Netflix

CHAOS TESTING ARGUMENT

Distributed systems are simply too complex to comprehensively predict

-> experiment on our systems to learn how they will behave in the presence
of faults

Base corrective actions on experimental results because they reflect real
risks and actual events

Experimentation != testing -- Observe behavior rather then expect specific
results

Simulate real-world problem in production (e.g., take down server, inject
latency)

Minimize blast radius: Contain experiment scope

NETFLIX'S SIMIAN ARMY

Chaos Monkey: randomly disable production instances
Latency Monkey: induces artificial delays in our RESTful client-server communication layer
Conformity Monkey: finds instances that don’t adhere to best-practices and shuts them down
Doctor Monkey: monitors other external signs of health to detect unhealthy instances
Janitor Monkey: ensures that our cloud environment is running free of clutter and waste

Security Monkey: finds security violations or vulnerabilities, and terminates the offending
instances

10-18 Monkey: detects problems in instances serving customers in multiple geographic regions

Chaos Gorilla is similar to Chaos Monkey, but simulates an outage of an entire Amazon
availability zone.

CHAOS TOOLKIT

e |nfrastructure for chaos experiments
e Driver for various infrastructure and failure cases
e Domain specific language for experiment definitions

"version": "1.0.0",
"title": "What 1is the impact of an expired certificate on ou
"description": "If a certificate expires, we should graceful
”tagS”: [Iltlsll],
"steady-state-hypothesis": {

"title": "Application responds",

"probes": [

{

lltypell: ”prObe”,
"name": "the-astre-service-must-be-running",
"tolerance": true,
"provider": {
|ltype|l : Ilpythonll’
"module": "os.path",

"fFiine'': ""avictel!

http://principlesofchaos.org, https://github.com/chaostoolkit, https://github.com/Netflix/SimianArmy

http://principlesofchaos.org/
https://github.com/chaostoolkit
https://github.com/Netflix/SimianArmy

CHAOS EXPERIMENTS FOR ML INFRASTRUCTURE?

4.31

Speaker notes

Fault injection in production for testing in production. Requires monitoring and explicit experiments.

INFRASTRUCTURE TESTING

Eric Breck, Shanging Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

CASE STUDY: SMART PHONE COVID-19 DETECTION

(from midterm; assume cloud or hybrid deployment)

https://www.youtube.com/watch?v=e62ZL3dCQWM

DATA TESTS

1. Feature expectations are captured in a schema.

2. All features are beneficial.

3. No feature’s cost is too much.

4, Features adhere to meta-level requirements.

5. The data pipeline has appropriate privacy controls.
6. New features can be added quickly.

7. All input feature code is tested.

Eric Breck, Shanging Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

TESTS FOR MODEL DEVELOPMENT

1. Model specs are reviewed and submitted.

2. Offline and online metrics correlate.

3. All hyperparameters have been tuned.

4, The impact of model staleness is known.

5. Asimpler model is not better.

6. Model quality is sufficient on important data slices.
7. The model is tested for considerations of inclusion.

Eric Breck, Shanging Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

ML INFRASTRUCTURE TESTS

1. Training is reproducible.

2. Model specs are unit tested.

3. The ML pipeline is Integration tested.

4, Model quality is validated before serving.
5. The model is debuggable.

6. Models are canaried before serving.

7. Serving models can be rolled back.

Eric Breck, Shanging Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

MONITORING TESTS

1. Dependency changes result in notification.
2. Data invariants hold for inputs.

3. Training and serving are not skewed.

4. Models are not too stale.

5. Models are numerically stable.

6. Computing performance has not regressed.
7. Prediction quality has not regressed.

Eric Breck, Shanging Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

BREAKOUT GROUPS

e Discuss in groups:
= Team 1 picks the data tests
= Team 2 the model dev. tests
= Team 3 the infrastructure tests
= Team 4 the monitoring tests
e For 15 min, discuss each listed point in the context of the Covid-detection
scenario: what would you do?
e Report back to the class

Data Tests

Code

=

ML Infrastructure
Tests

Model

Tests

Model
Training

B |nit Tests B Integration
Tests

Skew Tests

= Running
System

Data
Monitoring

Prediction
Monitoring

System
Monitoring

Source: Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML
Production Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

ASIDE: LOCAL
IMPROVEMENTS VS
OVERALL QUALITY

e |deally unit tests catch bugs locally

e Some bugs emerge from interactions among system components
= Missed local specifications -> more unit tests
= Nonlocal effects, interactions -> integration & system tests

Known as emergent properties and feature interactions

FEATURE INTERACTION EXAMPLES

Speaker notes

Flood control and fire control work independently, but interact on the same resource (water supply), where flood control
may deactivate the water supply to the sprinkler system in case of a fire

FEATURE INTERACTION EXAMPLES

Speaker notes

Electronic parking brake and AC are interacting via the engine. Electronic parking brake gets released over a certain
engine speed and AC may trigger that engine speed (depending on temperature and AC settings).

FEATURE INTERACTION EXAMPLES

[:weather:]

:) 8-) ;-) ...

)

QOV®
OO
PVWE
VOO
WOO®

Today's weather: [:weather o

Speaker notes

Weather and smiley plugins in WordPress may work on the same tokens in a blog post (overlapping preconditions)

FEATURE INTERACTION EXAMPLES

Speaker notes

Call forwarding and call waiting in a telecom system react to the same event and may result in a race condition. This is
typically a distributed system with features implemented by different providers.

FEATURE INTERACTIONS

Failure in compositionality: Components developed and tested independently,
but they are not fully independent

Detection and resolution challenging:

e Analysis of requirements (formal methods or inspection), e.g., overlapping
preconditions, shared resources

e Enforcingisolation (often not feasible)
e Testing, testing, testing at the system level

Recommended reading: Nhlabatsi, Armstrong, Robin Laney, and Bashar Nuseibeh. Feature interaction: The
security threat from within software systems. Progress in Informatics 5 (2008): 75-89.

https://www.nii.ac.jp/pi/n5/5_75.pdf

MODEL CHAINING

automatic meme generator

Search Tweets

Y

Object Detection

Y

Sentiment Analysis

Overlay Tweet

Example adapted from Jon Peck. Chaining machine learning models in production with Algorithmia. Algorithmia

blog, 2019

https://algorithmia.com/blog/chaining-machine-learning-models-in-production-with-algorithmia

ML MODELS FOR FEATURE EXTRACTION

selfdriving car

Object Detection

Y

Object Tracking

Object Motion Prediction

Y

Lane Detection

A

Traffic Light & Sign Recognition

Planning

Speed

Location Detector

Example: Zong, W., Zhang, C., Wang, Z., Zhu, J., & Chen, Q. (2018). Architecture design and implementation of an
autonomous vehicle. IEEE access, 6, 21956-21970.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8340798

NONLOCAL EFFECTS IN ML SYSTEMS?

Speaker notes

Improvement in prediction quality in one component does not always increase overall system performance. Have both
local model quality tests and global system performance measures.

Examples: Slower but more accurate face recognition not improving user experience for unlocking smart phone.

Example: Chaining of models -- second model (language interpretation) trained on output of the first (parts of speech
tagging) depends on specific artifacts and biases

Example: More accurate model for common use cases, but more susceptible to gaming of the model (adversarial
learning)

RECALL: BETATESTS AND TESTING IN
PRODUCTION

e Test the full system in a realistic setting
e Collect telemetry to identify bugs

Get Started Now 9 Get Started Now

It's free! No trials, no fees. It's free! No trials, no fees.

.10

RECALL: THE WORLD VS THE MACHINE

e Be explicit about interfaces between world and machine (assumptions, both
sensors and actuators)
e No clear specifications between models, limits modular reasoning

RECALL: DETECTING DRIFT

e Monitor data distributions and detect drift
= Detect data drift between ML components
e Document interfaces in terms of distributions and expectations

DEV VS. OPS

SUNORKEDFINETNN
-uu;nw TN

. ‘ .
OPS PROBLEMNOW

COMMON RELEASE PROBLEMS?

COMMON RELEASE PROBLEMS (EXAMPLES)

e Missing dependencies

e Different compiler versions or library versions

e Different local utilities (e.g. unix grep vs mac grep)
e Database problems

e OS differences

e Too slow in real settings

e Difficult to roll back changes

e Source from many different repositories

e Obscure hardware? Cloud? Enough memory?

OPERATIONS

DEVELOPERS e Allocating hardware resources
e Managing OS updates

Coding e Monitoring performance
Testing, static analysis, reviews e Monitoring crashes
Continuous integration e Managing load spikes, ...
Bug tracking e Tuning database performance
Running local tests and scalability * Running distributed at scale
experiments e Rolling back releases

QA responsibilities in both roles

QUALITY ASSURANCE DOES NOT STOP IN DEV

Ensuring product builds correctly (e.g., reproducible builds)

Ensuring scalability under real-world loads

Supporting environment constraints from real systems (hardware, software,
0S)

Efficiency with given infrastructure

Monitoring (server, database, Dr. Watson, etc)

Bottlenecks, crash-prone components, ... (possibly thousands of crash
reports per day/minute)

KEY IDEAS AND PRINCIPLES

Better coordinate between developers and operations (collaborative)
Key goal: Reduce friction bringing changes from development into
production

Considering the entire tool chain into production (holistic)
Documentation and versioning of all dependencies and configurations
("configuration as code")

Heavy automation, e.g., continuous delivery, monitoring

Small iterations, incremental and continuous releases

Buzz word!

COMMON PRACTICES

All configurations in version control

Test and deploy in containers

Automated testing, testing, testing, ...

Monitoring, orchestration, and automated actions in practice
Microservice architectures

Release frequently

HEAVY TOOLING AND AUTOMATION

Collaborate

5 slack QHipthat H#irc
Tlowdock

~ Application Lifecycle Mgmt. — ~SCM/VCS
¥JIRA mingle
J Mmingle [@7relsr © git ’ w
e
Team Foundation Server piueracker G @ GItHI.lb
‘ Basecamp' s s dSANA Gags QBltbucket v
e TeitBucket -0
~Communication & ChatOps e
Pwercker EPsSNAP

TG TeamCity @Jenkins

Mark S Read the Docs

down
* ; "
o8, 2Piblueprint 2L

wrLaRM TR 7 OPEN API
“I‘/‘ﬁhv.;’
Discourse

 reddit

. Dcirclect =
C0G @ D> go ‘@ Tavsd
‘ﬁb V05 Nestor lIlA ,—,I CODESH\P
~Knowledge Sharing ~Build %
] MEradle §F GRUNT
eyl || @t pr
github:pages avery
" docker _js AA m
@ X Confluence __{_, "Y— ‘/ { ‘,.r\-
- * <KPACHE ANT>

R vsouc
ﬁLeiningen ‘ Rake

~Database Management
_|._DBmaestro DBDeploy -
Flyw:
Flocker W o

5] redgate LIQUISBASE

~Testing

Test Aul

Sele

GAUNTLT
£ Gatling

wWKARMA

Jasmine @

OWASP

ZAP

JUnit

N i

TesH
cucumbere NG

a; 4! Galen Framework

@ LOAD IMPACT
/ Meter
(\
pytest G

l. Browsersync

B)FitNesse

[Qunit

Js unit testing

=BlazeMeter

B Pally
specﬂcw

Newman V xUnIt net

~Deployment —————

* Octopus Deploy (xL) DepPLOY
=RUNDECK =
>_ JUjU
=¥] ElasticBox Spimnaker

N NOLIO

~Cloud / laaS / PaaS
"| heroku
u--ama on

web
Y Dokky Flynn (i)
AZUre® CLOUDFOUNDRY
Google Cloud Platform mmdcs'paae.
k)
nopenstack C‘F) O .

DEIS appfog opensurr ok

 Config Mgmt./Provisioning

A\

pupret

C

CHEF ANSIBLE

CFEngine

SALTSTACK ..‘ PowerShell DSC
v VAGRANT .TFRRAFORM

~Orchestration & Scheduling

[MESOSPHERE o

b oocte- o MARATHON
SWARM kubernetes

Nomad

-
RANCHER g&8% Mesos

—Artefact Management

(0 QuUAY
DockerHuB g e
R oocke. 4 ‘
REGISTRY Bower
O JFrog Artifactory p[:ltl:]&)g
Dnuget

= Sonatype

archiva’ mm Nexus

—BI / Monitoring / Logging
wn logstash == elasticsearch

splunk/ Vectér ‘klbana a
DATADOG

O

GR(f?'K ZIPKIN § Google Analytics x-pack
A\ SENTRY
© New Relic.

PINPOINT

VIZCERAL

&
& Runscope sensu ;{gs RIEMANN

()ﬂpm

Bo-

i/ dynatrace

Airbrake.io
pagerduty 00

s ngmetheus ;

R G Grol‘cnct
- qrapnie BN

RAYGUN &5 Starsh & 5
ARollbar | -

beats @ OpsGenie /A Keen IO

http://localhost:1948/devops_tools.jpg

HEAVY TOOLING AND AUTOMATION -- EXAMPLES

e |nfrastructure as code — Ansible, Terraform, Puppet, Chef

e CI/CD — Jenkins, TeamCity, GitLab, Shippable, Bamboo, Azure DevOps
e Test automation — Selenium, Cucumber, Apache JMeter

e Containerization — Docker, Rocket, Unik

e Orchestration — Kubernetes, Swarm, Mesos

e Software deployment — Elastic Beanstalk, Octopus, Vamp

e Measurement — Datadog, DynaTrace, Kibana, NewRelic, ServiceNow

CONTINUOUS DELIVERY

Engineer Value = X days &
C:;?:ltﬂltl Total Time = X+Y days = Z% Efficient Prod

Nightly Build Accept. Test Manual Test
Automated Automated Manual

2 hours 5 hours 2 days 1 min 1 hour

Hourly Build

Automated/Manual?

Value 1 hour

Waste 15 hours 1 day 6 days 1.5 days 4 days 4 days

Source: https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-
beyond

https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-beyond

TYPICAL MANUAL STEPS IN DEPLOYMENT?

| I_"";f,zll I

CONTINUOUS DELIVERY

e Full automation from commit to
deployable container

e Heavy focus on testing,
reproducibility and rapid feedback

e Deployment step itself is manual

e Makes process transparent to all
developers and operators

CONTINUOUS
DEPLOYMENT

Full automation from commit to
deployment

Empower developers, quick to
production

Encourage experimentation and
fastincremental changes
Commonly integrated with
monitoring and canary releases

Continuous Delivery

Unit Test Platform Test Deliver to Application Deploy to Post
Staging Acceptance tests Production deploy tests
Continuous Deployment
Unit Test Platform Test Deliver to Application Deploy to Post
Staging Acceptance tests Production deploy tests

Release

User acceptance
tests

Automated
acceptance tests

Build & unit
tests

Version control

Delivery team

Check in
Check in

https://en.wikipedia.org/wiki/Continuous_delivery#/media/File:Continuous_Delivery_process_diagram.svg

FACEBOOK TESTS FOR MOBILE APPS

e Unit tests (white box)

e Static analysis (null pointer warnings, memory leaks, ...)
e Build tests (compilation succeeds)

e Snapshot tests (screenshot comparison, pixel by pixel)
e Integration tests (black box, in simulators)

e Performance tests (resource usage)

e Capacity and conformance tests (custom)

Further readings: Rossi, Chuck, Elisa Shibley, Shi Su, Kent Beck, Tony Savor, and Michael Stumm. Continuous
deployment of mobile software at facebook (showcase). In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 12-23. ACM, 2016.

https://research.fb.com/wp-content/uploads/2017/02/fse-rossi.pdf

RELEASE CHALLENGES FOR MOBILE APPS

e Large downloads

e Download time at user discretion
e Different versions in production
e Pull support for old releases?

e Server side releases silent and quick, consistent

e ->App as container, most content + layout from server

REAL-WORLD PIPELINES
ARE COMPLEX

% ¢

O

git checkout

* . A3 V4 I :
Misc automation Misc Web Ul
tools driving Configerator,
config changes Gatfﬁkeeper,

Sitevar query
canary
status

s

-

=

Dependency | =
CPERCENEY << Mutator

Service 4

>

ﬁ

Ea

=

auerv denﬁ:ndencv

http://localhost:1948/facebookpipeline.png

€

€

-]‘

|
Y

Development
Server Canary
6 > Service
a1t checkout +
publish diff for [
. —
code review]
—
Landing Strip
Phabricator
(for code +
IevVIEw) Master
Git
post testing results Repository
Sandcastle 6
(continuous #
integration
tests) Git Tailer
Z.eus Ensemble p -
[Leader

o

temporarily
deploy

a config

for canary
testing

http://localhost:1948/facebookpipeline.png

SN/ N /7 N
| (Follower | [Follower) I'\Follmn-'er/l

[Follower
N SN SN /

Multiple Observers in Each Cluster

g N /) e N
. Observer | | Observer | | Observer |
AN 2N 2N /

Production Server

- N/ N/ N
. Product X || ProductY){ Product Z. |
N N N __/

HHVM (PHP VM)

Gatekeeper runtime as

HHVM extension
v __ |
- ~
— Proxy >

http://localhost:1948/facebookpipeline.png

-
— o Application A>|4—
-

—{ Application B/"'M—

N

y

N

e

http://localhost:1948/facebookpipeline.png

CONTAINERS AND
CONFIGURATION
MANAGEMENT

CONTAINERS

Lightweight virtual machine
Contains entire runnable software,
incl. all dependencies and
configurations

Used in development and
production

Sub-second launch time

Explicit control over shared disks
and network connections

docker

10.

2

DOCKER EXAMPLE

FROM ubuntu:latest

MAINTAINER ...

RUN apt-get update -y

RUN apt-get install -y python-pip python-dev build-essential

COPY . /app

WORKDIR /app

RUN pip install -r requirements.txt
ENTRYPOINT ["python"]

CMD ["app.py"]

Source: http://containertutorials.com/docker-compose/flask-simple-app.html

10.

3

http://containertutorials.com/docker-compose/flask-simple-app.html

COMMON CONFIGURATION MANAGEMENT
QUESTIONS

What runs where?

e How are machines connected?

What (environment) parameters does software X require?
e How to update dependency X everywhere?

How to scale service X?

ANSIBLE EXAMPLES

e Software provisioning, configuration management, and application-
deployment tool
e Apply scripts to many servers

name: create data directory for mongodb
[webservers] file: path={{ mongodb_datadir_prefix }}/mon

webl.company.org delegate_to: '{{ item }}'
web2.company.org with_items: groups.replication_servers

web3.company.org

name: create log directory for mongodb
[dbservers] file: path=/var/log/mongo state=directory o

dbl.company.org
db2.company.org name: Create the mongodb startup file

template: src=mongod.j2 dest=/etc/init.d/mo

[replication_server delegate_to: '{{ item }}'
with_items: groups.replication_servers

PUPPET EXAMPLE

Declarative specification, can be applied to many machines

$doc_root = "/var/www/example"

exec { 'apt-get update':
command => '/usr/bin/apt-get update'’
)

package { 'apache2':
ensure => "installed",
require => Exec['apt-get update']

}

file { $doc_root:
ensure => "directory",
owner => "www-data'",
group => "www-data",

10.

6

Speaker notes

source: https://www.digitalocean.com/community/tutorials/configuration-management-101-writing-puppet-manifests

https://www.digitalocean.com/community/tutorials/configuration-management-101-writing-puppet-manifests

CONTAINER ORCHESTRATION WITH KUBERNETES

e Manages which container to deploy to which machine
e Launches and kills containers depending on load

e Manage updates and routing

e Automated restart, replacement, replication, scaling
e Kubernetis master controls many nodes

Kubernetes Master

Controller Manager)

APl Server
Scheduler)

Developer
/ Operator

Users

|

Kubelet (CAdvisor Kube Proxy] Kubelet (cAdvisor] (Kube-Proxy]

< Plugin Network (eg Flannel, Weavenet, etc) >

Kubernetes Node Kubernetes Node

https://en.wikipedia.org/wiki/Kubernetes#/media/File:Kubernetes.png

CC BY-SA 4.0 Khtan66

10.

https://en.wikipedia.org/wiki/Kubernetes#/media/File:Kubernetes.png

MONITORING

Monitor server health

Monitor service health

Collect and analyze measures or log files
Dashboards and triggering automated decisions

Many tools, e.g., Grafana as dashboard, Prometheus for metrics, Loki +
ElasticSearch for logs
Push and pull models

HAWKULAR

& Hawkular APM x

< C | @ localhost % E

HAWKULAR APPLICATION PERFORMANCE MANAGEMENT

Components Distributed Tra

<
Filter by Aggregation Interval: | 10 Second v |t Overlap Data Last Update: 12 Oct 2016 14:35:32 Il Pause Live Data
Time Span 8
g
10 Minutes v 0.0006 | 3
0.0005
~ Business Transaction
0.0004
w Al
2016-10-12 14:31:10
List My Orders 0.0003
¥ database 0.000014925
Place Order - -
0.0002 R R nsumer 0.000111111
. P . A . O Va Producer 0.000131147
“ Properties 00001 — v \
MName v a \J\M«\A R S
2016-10-12 14:25:30 2016-10-12 14:26:50 2016-10-12 14:28:10 2016-10-12 14:29:30 2016-10-12 14:30:50 2016-10-12 14:32:10
M database Consumer M Producer
Text
Actual (secs) Elapsed (secs) Count Component URI Operation
~ Host Mame
_ 0.000 0.001 1320 consumer forders POST
— 0.000 0.001 140 consumer forders GET
. 0.000 0.000 1320 consumer GetAccount
I 0.000 0.000 1102 consumer Getltem
I 0.000 0.000 535 consumer StoreOrder
I 0.000 0.000 535 consumer UpdateQuantity
- 0.000 0.000 140 consumer GetOrders
I 0.000 0.000 1102 database InventoryDB Querylnventory
| 0.000 0.000 535 database InventoryDB Writelnventory
I 0.000 0.000 1320 database AccountsDB RetrieveAccount

https://www.hawkular.org/hawkular-apm/

HAWKULAR

& Hawkular APM x
&« C | (@ localhost

HAWKULAR APPLICATION PERFORMANCE MANAGEMENT

Distributed Tracing Business Trar

<
Filter by Initial Endpoint OrderManager: /orders[POST] v Show 2 Instance(s) Details
Time Span
1 Hour ~
InventoryManager
[UpdateQuantity]
@ 0.116ms 2
~ Business Transaction
InventoryManager
o Al [Getltem]
Place Order OrderManager © 0.078ms |.I_j 2

forders[POST]
O 34.5ms
v Properties

Name v

2 OrderlLog
[StoreOrder]
@ 0.126ms 2

AccountManager
[GetAccount]

O 2ms |.EI 2

@ Reset Zoom

https://www.hawkular.org/hawkular-apm/

N_Osz

MODEL
DENELOPMENT

OPERATIONS

https://ml-ops.org/

https://ml-ops.org/

ON TERMINOLOGY

Many vague buzzwords, often not clearly defined
MLOps: Collaboration and communication between data scientists and
operators, e.g.,

= Automate model deployment

= Model training and versioning infrastructure

= Model deployment and monitoring
AlOps: Using Al/ML to make operations decision, e.g. in a data center
DataOps: Data analytics, often business setting and reporting

= |nfrastructure to collect data (ETL) and support reporting

= Monitor data analytics pipelines

= Combines agile, DevOps, Lean Manufacturing ideas

MLOPS OVERVIEW

Integrate ML artifacts into software release process, unify process
Automated data and model validation (continuous deployment)
Data engineering, data programming
Continuous deployment for ML models

= From experimenting in notebooks to quick feedback in production
Versioning of models and datasets
Monitoring in production

Further reading: MLOps principles

https://ml-ops.org/content/mlops-principles.html

TOOLING LANDSCAPE LF Al

Linux Foundation Al Landscape See the interactive landscape at |.Ifai.foundation

2020-06-30T02:16:48Z ebffcc5

Reinforcement Security &
Framework Platform Library Framework Platform Library Tool Programming Privatzy

Learning

‘GrestFlow

LFAIl Incubating

Deep Learning

Reinforcement

Programming
Security & Privacy

Machine Learning

SQL Feature Visualization Pipeline Labeling and

Engine Engineering Management Annotation C°Vernance

Store & Format Operations Stream Processing

".*. MARQUEZ
@ ’ o
Milvus LFAI Incubating

LFAI Incubating

Processing

(9]
o
©
=
=)
=2
©

=y

©
o
=
=
©
=

Benchmarking Training Parameter Format Marketplace Inference Interface

& rcumos

LFAI Graduated

LFAI Incubating LFAI Incubating

Distributed

Computing

Notebook
Environment

LFAI Graduated

Bias &
Explainability Adversarial I Premier
Fairness

This landscape explores LF Al - - @k,
open source artificial Landscape = AT&T Bai'cg'EE
intelligence, machine
learning, and deep 1 LF Al
learning projects, and L
lists the members of the

|.Ifai.foundationLF Al Foundation.

ERICSSON HUAWEI < I

MAI=I EINYU

L Tencent #it Z TE - PSIT

@sucis

Trusted &
Responsible Al
LF Al Member

Company

x| R

Linux Foundation Al Initiative

https://landscape.lfai.foundation/

11.

SUMMARY

Beyond model and data quality: Quality of the infrastructure matters,
danger of silent mistakes
Many SE techniques for test automation, testing robustness, test adequacy,
testing in production useful for infrastructure quality
Lack of modularity: local improvements may not lead to global
Improvements
DevOps: Development vs Operations challenges

= Automated configuration

= Telemetry and monitoring are key

= Many, many tools

