SAFETY

Christian Kaestner

With slides from Eunsuk Kang

Required Reading [] Salay, Rick, Rodrigo Queiroz, and Krzysztof Czarnecki. "An analysis of ISO 26262: Using
machine learning safely in automotive software." arXiv preprint arXiv:1709.02435 (2017).


https://arxiv.org/pdf/1709.02435

LEARNING GOALS

Understand safety concerns in traditional and Al-enabled systems

Apply hazard analysis to identify risks and requirements and understand
their limitations

Discuss ways to design systems to be safe against potential failures
Suggest safety assurance strategies for a specific project

Describe the typical processes for safety evaluations and their limitations



SAFETY



DEFINING SAFETY

e Prevention of a system failure or malfunction that results in:
= Death or serious injury to people
= Loss or severe damage to equipment/property
= Harm to the environment or society
o Safety != Reliability
= Can build safe systems from unreliable components (e.g.
redundancies)
= Reliable components may be unsafe (e.g. stronger gas tank causes
more severe damage in incident)
= Safety is a system concept



EXAMPLES OF HARM FROM AI-ENABLED SYSTEMS?




SAFETY




SAFETY

Tweet


https://twitter.com/skoops/status/1065700195776847872

SAFETY

Tweet


https://twitter.com/EmilyEAckerman/status/1186363305851576321

SAFETY CHALLENGE WIDELY RECOGNIZED

Being able to apply ML in safety-critical applications will
be important to my organization in the future| a)

V&V of features that rely on ML is recognized as a
particularly challenging area in my organization| b)

My organization is well-prepared for a future in which
V&V of safety-critical ML is commonplace| c)

L

(survey among automotive engineers)

Borg, Markus, et al. "Safely entering the deep: A review of verification and validation for machine learning and a
challenge elicitation in the automotive industry." arXiv preprint arXiv:1812.05389 (2018).


https://arxiv.org/pdf/1812.05389

SAFETY IS A BROAD CONCEPT

* |Includes harm to mental health
* Includes polluting the environment, including noise pollution
e |Includes harm to society, e.g. poverty, polarization



CASE STUDY: SELF-DRIVING CAR




HOW DID TRADITIONAL VEHICLES BECOME SAFE?

ANY SPEED

The Designed-in Dangers
of The American Automobile
By Ralph Nader

e National Traffic & Motor Safety Act (1966): Mandatory design changes (head
rests, shatter-resistant windshields, safety belts); road improvements
(center lines, reflectors, guardrails)

.10



AUTONOMOUS VEHICLES: WHAT'S DIFFERENT?

Ford Taps the Brakes on the Arrival of Self-Driving Cars

YCL

The hype around driverless cars came
crashing down in 2018

Top Toyota expert throws cold water
on the driverless car hype

Challenges?



AUTONOMOUS VEHICLES: WHAT'S DIFFERENT?

Ford Taps the Brakes on the Arrival of Self-Driving Cars

HYPE CYCLE

The hype around driverless cars came
crashing down in 2018

Top Toyota expert throws cold water
on the driverless car hype

e |n traditional vehicles, humans ultimately responsible for safety
= Some safety features (lane keeping, emergency braking) designed to
help & reduce risks
= j.e,, safety = human control + safety mechanisms
e Use of Al in autonomous vehicles: Perception, control, routing, etc.,
= |nductive training: No explicit requirements or design insights
= Can ML achieve safe design solely through lots of data?



CHALLENGE: EDGE/UNKNOWN CASES
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e Gaps in training data; ML will unlikely to cover all unknown cases
e Why is this a unique problem for Al? What about humans?
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DEMONSTRATING SAFETY

The Self-Driving Car Companies Going the Distance
Number of test miles and reportable miles per disengagement in California in 2018

Miles Miles per Disengagement’
Waymo W EE . 11,1543
Mouise  CUSC S —]T
Zoox zZD<x EE B 19228
noo  PUFrD  EE B 10283
ponyal  COOV Bl Bl 10223
Missan -@- L I 2105
Baidu paitymw I 205.6
Aurora . = [99.9
Driveai drive.ar EE | 83.9
Nvidia @Anvioe BE= 20.1
MercedesBenz ' — 1.5
aple @ EE 1.1
ueer Uber =2 0.4

*Cases where a car's software detects a failure or a driver
@ @ @ perceived a failure, resulting in control being seized. - 7
@statistaCharts  Source: DMV via thelastdriverlicenseholder.com Fomi StatISta =

More miles tested => safer?




APPROACH FOR DEMONSTRATING SAFETY

e |dentify relevant hazards & safety requirements

e |dentify potential root causes for hazards

e For each hazard, develop a mitigation strategy

e Provide evidence that mitigations are properly implemented



HAZARD ANALYSIS

(system level!)



WHAT IS HAZARD ANALYSIS?

e Hazard: A condition or event that may result in undesirable outcome
= e.g.,"Ego vehicleis in risk of a collision with another vehicle."
e Safety requirement: Intended to eliminate or reduce one or more hazards
= "Ego vehicle must always maintain some minimum safe distance to
the leading vehicle."
e Hazard analysis: Methods for identifying hazards & potential root causes



RECALL: REQUIREMENT VS SPECIFICATION

e REQ: Ego vehicle must always maintain some minimum safe distance to the
leading vehicle.

e ENV: Engine is working as intended; sensors are providing accurate
information about the leading car (current speed, distance...)

e SPEC: Depending on the sensor readings, the controller must issue an
actuator command to accelerate/decelerate the vehicle as needed.



RECALL: WORLD VS MACHINE

Input devices
(e.g. sensors)

input data

monitored
variables

Environment

contrm

variables

Output devices
(e.g. actuators)

output results

Software is not unsafe; the control signals it generates may be

Root of unsafety usually in wrong requirements




FORWARD VS BACKWARD SEARCH

Initiating Final Initiating Final
Events States Events States
A W soihazam A W' nonhazard
B X | HAZARD B |- X | HAZARD
C / Y | nonhazard C Y  nonhazard
D / Z | nonhazard D Z  nonhazard
> <

Forward Search Backward Search




RECALL: FAULT TREE ANALYSIS (FTA)

TOP EVENT
No light in the room

OR
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e Top-down, backward search method for root cause analysis
= Start with a given hazard (top event), derive a set of component faults
(basic events)
= Compute minimum cutsets as potential root causes



RECALL: FAILURE MODE AND EFFECTS ANALYSIS

Function

Provide
) required

levels of

radiation

Protect
patients from
unexpected

Potential
Failure
Mode

Radiation
level too
high for the
required
intervention

Radiation at
lower level
than
required

Higher
radiation
than

high radiation required

Potential
Effect(s) of
Failure

Over radiation
of the
patients,

Patient Fails to
receive

enough
radiation.

Radiation
burns

SEY
i

Potential
Cause(s) of
Failure

Technician did
not set the
radiation at the

right level,

Software does
not respond to
hardware
mechanical
setting.

sneak paths in
software

occ
i

Current Current
Design Design DET RPN Recommended
Controls Controls i i Action(s)
(Prevention) (Detection)
Current
: Modify software
r;c:tf;‘: to alert technician
normal levels to L.’""_"”"""l "9“'|
after imaging : ¢ Ve
each patient. before activating.
Failure Include visual |
detection audio alarm in the
included in code when lack of
software response,
Improve recovery
protocol,
Shut the
system if
. Perform

does not .
match the matrix.
inputs.

e Aforward search technique to identify potential hazards
e Widely used in aeronautics, automotive, healthcare, food services,
semiconductor processing, and (to some extent) software



FMEA EXAMPLE: AUTONOMOUS VEHICLES

{Perception]_'[ Prediction ]—[ Planning ]_.[ Control ]_ [ Monitor ]
F 3 I
|
|

(o ) [CLNBUSJ_ -‘[ ]

Control lines

e Architecture of the Apollo autonomous driving platform




FMEA EXAMPLE: AUTONOMOUS VEHICLES

Failure
Component Failure Mode Detection Mitigation
P Effects &
Failure to . Human Deploy
: Risk of ,
Perception  detectan . operator (if secondary
. collision o
object present) classifier
Percention Detected but | |
P misclassified
: : Inability to Switch to
Lidar Mechanical Yy .
. detect Monitor manual control
Sensor failure

objects

mode




RECALL: HAZARD AND OPERABILITY STUDY

Guide Word Meaning
NO OR NOT Complete negation of the design intent
MORE Quantitative increase
LESS Quantitative decrease
AS WELL AS Qualitative modification/increase
PART OF Qualitative modification/decrease
REVERSE Logical opposite of the design intent

OTHER THAN / INSTEAD Complete substitution

EARLY Relative to the clock time
LATE Relative to the clock time
BEFORE Relating to order or sequence
AFTER Helating to order or sequence

e Aforward search method to identify potential hazards

e For each component, use a set of guide words to generate possible
deviations from expected behavior

e Consider the impact of each generated deviation: Can it result in a system-
level hazard?



HAZOP EXAMPLE: EMERGENCY BRAKING (EB)

Guide Word
NO OR NOT
MORE
LESS
AS WELLAS
PART OF
REVERSE
OTHER THAN / INSTEAD
EARLY
LATE
BEFORE
AFTER

Meaning
Complete negation of the design intent
Quantitative increase
Quantitative decrease
Qualitative modification/increase
Qualitative modification/decrease
Logical opposite of the design intent
Complete substitution
Relative to the clock time
Relative to the clock time
Relating to order or sequence

Relating to order or sequence

e Specification: EB must apply a maximum braking command to the engine.
NONE: EB does not generate any braking command.

LESS: EB applies less than max. braking.

LATE: EB applies max. braking but after a delay of 2 seconds.
REVERSE: EB generates an acceleration command instead of braking.
BEFORE: EB applies max. braking before a possible crash is detected.
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HAZOP EXERCISE: AUTONOMOUS VEHICLES

{Perception]_'[ Prediction ]—[ Planning ]_.[ Control ]_ [ Monitor ]
F 3 I
|
|

(o ) [CLNBUSJ_ -‘[ ]

Control lines

e Architecture of the Apollo autonomous driving platform




HAZOP EXERCISE: PERCEPTION

Guide Word Meaning
NO OR NOT Complete negation of the design intent
¥ | MORE Quantitative increase
LESS Quantitative decrease
AS WELLAS Qualitative modification/increase
PART OF Qualitative modification/decrease
| | REVERSE Logical opposite of the design intent

OTHER THAN / INSTEAD Complete substitution
EARLY Relative to the clock time
LATE Relative to the clock time

A% BEFORE Relating to order or sequence

AFTER Relating to order or sequence

e What is the specification of the perception component?
e Use HAZOP to answer:
= What are possible deviations from the specification?
= What are potential hazards resulting from these deviations?

.13



HAZOP: BENEFITS & LIMITATIONS

Guide Word Meaning
NO OR NOT Complete negation of the design intent
MORE Quantitative increase
LESS Quantitative decrease
AS WELLAS Qualitative modification/increase
PART OF Qualitative modification/decrease
REVERSE Logical opposite of the design intent

OTHER THAN / INSTEAD Complete substitution

EARLY Relative to the clock time
LATE Relative to the clock time
BEFORE Relating to order or sequence
AFTER Helating to order or sequence

Easy to use; encourages systematic reasoning about component faults

Can be combined with FTA/FMEA to generate faults (i.e., basic events in FTA)
Potentially labor-intensive; relies on engineer's judgement

Does not guarantee to find all hazards (but also true for other techniques)



REMARKS: HAZARD ANALYSIS

e None of these method guarantee completeness

= You may still be missing important hazards, failure modes
e Intended as structured approaches to thinking about failures

= But cannot replace human expertise and experience
e When available, leverage prior domain knowledge

= Safety standards: A set of design and process guidelines for
establishing safety

= |SO 26262, ISO 21448, IEEE P700x, etc.,

= Most do not consider Al; new standards being developed (e.g., UL
4600)



MODEL ROBUSTNESS



RECALL: DEFINING ROBUSTNESS

e A prediction for x is robust if the outcome is stable under minor
perturbations of the input
= Vx .d(x,x )< €= f(x) =f(x)
= distance function d and permissible distance € depends on problem
e Amodelis robustif most predictions are robust



ROBUSTNESS IN A SAFETY SETTING

e Does the model reliably detect stop signs?
e Alsoin poor lighting? In fog? With a tilted camera?
e With stickers taped to the sign?

Image: David Silver. Adversarial Traffic Signs. Blog post, 2017


https://medium.com/self-driving-cars/adversarial-traffic-signs-fd16b7171906

ROBUSTNESS VERIFICATION FOR SAFETY

e Rely only on predictions that are robust
= online verification, smoothing
e Detect outliersininputs
e |Learn more robust models
= data augmentation, simulation
= and many other strategies (see security lecture)



TESTING FOR SAFETY

e Curate data sets for critical scenarios (see model quality lecture)
e Create test data for difficult settings (e.g. fog)
e Simulation feasible? Shadow deployment feasible?



OTHER Al SAFETY
CONCERNS



https://arxiv.org/pdf/1606.06565.pdf%20http://arxiv.org/abs/1606.06565

NEGATIVE SIDE EFFECTS



decisionproblem.com

> AutoClippers available for purchase

Paperclips: 148

Business

Available Funds: $ 9.50
Unsold Inventory: 89

Price per Clip: $ .25

Public Demand: 32%

Marketing Level: 1
Cost: $ 100.00

Manufacturing

Clips per Second: 1

wire 852 inches
Cost: $ 26

Cost: $6.10




NEGATIVE SIDE EFFECTS

e Challenge: Define good goal/cost function
e Design in system context, beyond the model

e "Perform X" --> "perform X subject to common-sense constraints on the
environment" or "perform X but avoid side effects to the extent possible"

Other examples?

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. "Concrete problems
in Al safety." arXiv preprint arXiv:1606.06565 (2016).


https://arxiv.org/pdf/1606.06565.pdf%20http://arxiv.org/abs/1606.06565

Speaker notes

An self-driving car may break laws in order to reach a destination faster



REWARD HACKING

PlayFun algorithm pauses the game of Tetris indefinitely to
avoid losing

When about to lose a hockey game, the PlayFun algorithm
exploits a bug to make one of the players on the opposing
team disappear from the map, thus forcing a draw.

Self-driving car rewarded for speed learns to spin in circles

Self-driving car figures out that it can avoid getting
penalized for driving too close to other cars by exploiting
certain sensor vulnerabilities so that it can’t “see” how
closeitis getting



REWARD HACKING

e Al can be good at finding loopholes to achieve a goal in unintended ways
e Technically correct, but does not follow designer's informal intend

e Many reasons, incl. partially observed goals, abstract rewards, proxies,
feedback loops

Challenging to specify goal and reward function properly

Other examples?

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. "Concrete problems
in Al safety." arXiv preprint arXiv:1606.06565 (2016).


https://arxiv.org/pdf/1606.06565.pdf%20http://arxiv.org/abs/1606.06565

REWARD HACKING -- MANY EXAMPLES

Tweet


https://twitter.com/vkrakovna/status/980786258883612672

OTHER CHALLENGES

e Scalable Oversight
= Cannot provide human oversight over every action (or label all

possible training data)
= Use indirect proxies in telemetry to assess success/satisfaction

= Training labels may not align well with goals
= ->Semi-supervised learning? Distant supervision?
e Safe Exploration
= Exploratory actions "in production" may have consequences
= e.g., trap robots, crash drones
= > Safety envelopes and other strategies to explore only in safe
bounds (see also chaos engineering)

e Robustness to Drift
= Drift may lead to poor performance that may not even be recognized

= -> Check training vs production distribution (see data quality lecture),
change detection, anomaly detection

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. "Concrete problems
in Al safety." arXiv preprint arXiv:1606.06565 (2016).


https://arxiv.org/pdf/1606.06565.pdf%20http://arxiv.org/abs/1606.06565




DESIGNING FOR SAFETY



ELEMENTS OF SAFE DESIGN

e Assume: Components will fail at some point
e Goal: Minimize the impact of failures on safety
e Detection

= Monitoring
Control

= Graceful degradation (fail-safe)

= Redundancy (fail over)
e Prevention

= Decoupling & isolation



DETECTION: MONITORING

output

Doer

input | corrective :
il R . check
action .

—>{ Checker ‘

e Goal: Detect when a component failure occurs
e Heartbeat pattern
= Periodically sends diagnostic message to monitor
e Doer-Checker pattern
= Doer: Perform primary function; untrusted and potentially faulty
= Checker: If doer output faulty, perform corrective action (e.g., default
safe output, shutdown); trusted and verifiable




DOER-CHECKER EXAMPLE: AUTONOMOUS VEHICLE

Vehicle Controller

|envircnmental

input ML-based Controller
(Doer)

control action
safe control

Safety Controller action
(Checker)

Sensor Environment Actuator

e ML-based controller (doer): Generate commands to maneuver vehicle
= Complex DNN; makes performance-optimal control decisions
e Safety controller (checker): Checks commands from ML controller; overrides
it with a safe default command if maneuver deemed risky
= Simpler, based on verifiable, transparent logic; conservative control



RESPONSE: GRACEFUL DEGRADATION (FAIL-SAFE)

e Goal: When a component failure occurs, continue to provide safety (possibly
at reduced functionality and performance)

e Relies on a monitor to detect component failures

e Example: Perception in autonomous vehicles
= |f Lidar fails, switch to a lower-quality detector; be more conservative
= But what about other types of ML failures? (e.g., misclassification)



RESPONSE: REDUNDANCY (FAILOVER)

Hot Standby Voting
Primary ‘ Comp B \
[heartbeat take over y
Standt‘Jy Majority Voter |
y Output

Goal: When a component fails, continue to provide the same functionality
Hot Standby: Standby watches & takes over when primary fails
Voting: Select the majority decision
Caution: Do components fail independently?
= Reasonable assumption for hardware/mechanical failures
= Q. What about software?



RESPONSE: REDUNDANCY (FAILOVER)

Hot Standby Voting
Primary ‘ Comp B \
[heartbeat take over y
Standt‘Jy Majority Voter |
y Output

Goal: When a component fails, continue to provide the same functionality
Hot Standby: Standby watches & takes over when primary fails
Voting: Select the majority decision
Caution: Do components fail independently?
= Reasonable assumption for hardware/mechanical failures
= Software: Difficult to achieve independence even when built by
different teams (e.g., N-version programming)
= Q. ML components?



PREVENTION: DECOUPLING & ISOLATION

e Goal: Faults in a low-critical (LC) components should not impact high-critical
(HC) components



POOR DECOUPLING: USS YORKTOWN (1997)

e |Invalid data entered into DB; divide-by-zero crashes entire network
e Required rebooting the whole system; ship dead in water for 3 hours
e Lesson: Handle expected component faults; prevent propagation



POOR DECOUPLING: AUTOMOTIVE SECURITY

Callular ratwark Qyetooth AFPF
Breakout box I
T FAAMIXM ViFi —5n
s -
d &
QED M Thox
~ F
CAN-bus - - * x - ¥
b L & 4 4 |
455 BCM E~S ABS3 ocu ECM PFSCU

e Main components connected through a common CAN bus
= Broadcast; no access control (anyone can read/write)
e Can control brake/engine by playing a malicious MP3 (Stefan Savage, UCSD)
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PREVENTION: DECOUPLING & ISOLATION

Goal: Faults in a low-critical (LC) components should not impact high-critical
(HC) components
Apply the principle of least privilege

= | C components should be allowed to access min. necessary data
Limit interactions across criticality boundaries

= Deploy LC & HC components on different networks

= Add monitors/checks at interfaces
Identify and eliminate implicit interactions

= Memory: Shared memory, global variables

= CPU resources: LC tasks running at high-priority, starving HC tasks
Is Al in my system performing an LC or HC task?

= |f HC, can we "demote" it into LC?



EXAMPLE: RADIATION THERAPY

e Safety requirement: If door opens during treatment, insert beam block.



EXISTING DESIGN

e Which components are responsible

for establishing this safety
requirement (e.g., high critical)?
e Existing design includes:

= Pub/sub event handler: 3rd- Beam Biock
party library; missing source
code; company went Ca
bankrupt

. Eve nt loggi n g: M ay th rOW a n Treatment Treatment Event
error if d is k fu l l ul Manager Handler Manager

= Event handler/logging used
by all tasks, including LC Pationt DB e

ones

e |sit possible to achieve high
confidence that these HC
components don't fail?



ALTERNATIVE DESIGN

e Build in an emergency unit
= Bypass event handler for HC
tasks
e Still needs to rely on door & beam
controllers
= Can't eliminate the risk of
failure, but significantly
reduce it
= Emergency unit simpler, can
be verified & tested

Door

Controller

Door Opened =
Beam Blocked 38

Emergency
Unit

Beam Block

Beam
Controller

Treatment Treatment Event
ul Manager Handler

Patient DB Event

Logger

Beam
Manager
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ML AS UNRELIABLE COMPONENTS

Symbolic Al can provide guarantees
ML models may make mistakes, no specifications
= see also ML as requirements engineering?
e Mistakes are hard to predict or understand
= Does interpretability help?
e Mistakes are not independent or uniformly distributed
= Classic redundancy mechanisms may not work?



SELF-DRIVING CARS






Speaker notes

Driving in controlled environments vs public roads



1SO 26262

e Current standards not prepared for machine learning
e Assume specifications and corresponding testing

e Salay, Rick, Rodrigo Queiroz, and Krzysztof Czarnecki. "An analysis of ISO 26262: Using machine learning
safely in automotive software." arXiv preprint arXiv:1709.02435 (2017).

e Salay, Rick, and Krzysztof Czarnecki. "Using machine learning safely in automotive software: An assessment
and adaption of software process requirementsin ISO 26262." arXiv preprint arXiv:1808.01614 (2018).


https://arxiv.org/pdf/1709.02435
https://arxiv.org/pdf/1808.01614

ML-SPECIFIC FAULT TOLERANCE PATTERNS

e Ensemble learning methods
= e.g. multiple classifiers for pedestrian detection
e Safety envelope (hard-coded constraints on safe solutions)
= e.g. combine ML-based pedestrian detector with programmed object
detector for obstacle avoidance
e Simplex architecture (conservative approach on low-confidence
predictions)
= e.g.slow down if obstacle is detected, but kind/trajectory of obstacle
unclear
e Runtime verification + Fail Safety (partial specs)
= e.g. detect whether detected pedestrian detector behavior violates
partial specification at runtime (plausibility checks)
Data harvesting (keep low confidence data for labeling and training)
= e.g. pedestrian detector's safe low confidence predictions saved for
offline analysis

Salay, Rick, and Krzysztof Czarnecki. "Using machine learning safely in automotive software: An assessment and
adaption of software process requirementsin ISO 26262." arXiv preprint arXiv:1808.01614 (2018).


https://arxiv.org/pdf/1808.01614

THE UBER CRASH




Speaker notes

investigators instead highlighted the many human errors that culminated in the
death of 49-year-old Elaine Herzberg. Driver was reportedly streaming an episode
of The Voice on her phone, which is in violation of Uber’s policy banning phone use.
In fact, investigators determined that she had been glancing down at her phone and
away from the road for over a third of the total time she had been in the car up until
the moment of the crash.

woefully inadequate safety culture

federal government also bore its share of responsibility for failing to better regulate
autonomous car operations

The company also lacked a safety division and did not have a dedicated safety
manager responsible for risk assessment and mitigation. In the weeks before the
crash, Uber made the fateful decision to reduce the number of safety drivers in each
vehicle from two to one. That decision removed important redundancy that could
have helped prevent Herzberg'’s death.

(from https://www.theverge.com/2019/11/20/2097397 1/uber-self-driving-car-crash-investigation-human-error-results)


https://www.theverge.com/2019/11/20/20973971/uber-self-driving-car-crash-investigation-human-error-results




Level O:
Level 1:

Level 2:

Level 5:

SAE SELF-DRIVING LEVELS

No automation

Driver assistance

Speed xor steering in certain conditions; e.g. adaptive cruise control
Driver fully active and responsible

Partial automation

Steer, accelerate and break in certain circumstances, e.g. Tesla Autopilot
Driver scans for hazards and initiates actions (lane changes)

Conditional automation

Full automation in some conditions, Audi Traffic Jam Pilot

Driver takes over when conditions not met

High automation

Full automation in some areas/conditions, e.g. highways in good weather
No driver involvement in restricted areas

Full automation

Full automation on any road and any condition where human could drive

SAE Standard J3016



INTERNATIONAL.

What does the
human in the
driver’s seat
have to do?

What do these
features do?

Example
Features

SAE J3016™LEVELS OF DRIVING AUTOMATION

SE SE SE
LEVELO J LEVEL1 J LEVEL 2

You are driving whenever these driver support features
are engaged - even if your feet are off the pedals and
you are not steering

You must constantly supervise these support features;
you must steer, brake or accelerate as needed to
maintain safety

These are driver support features

These features
provide
steering

AND brake/
acceleration
support to
the driver

These features
provide
steering

OR brake/
acceleration
support to
the driver

These features
are limited
to providing

warnings and
momentary
assistance

s automatic * lane centering
emergency OR
hraking

» lane centering
AND

= adaptive cruise
control at the
same time

* adaptive cruise

+blind spot control

warning

*|ane departure
warning

SE SE SE
LEVEL 3 J LEVEL4 J LEVELS

You are not driving when these automated driving
features are engaged - even if you are seated in
“the driver’s seat”

When the feature

These automated driving features
requests,

will not require you to take

you must drive over driving

These are automated driving features

These features can drive the vehicle
under limited conditions and will
not operate unless all required
conditions are met

This feature
can drive the
vehicle under
all conditions

» traffic jam * local driverless
chauffeur taxi

* same as
level 4,
but feature
can drive
everywhere
in all
conditions

» pedals/
steering
wheel may or
may not be
installed

For a more complete description, please download a free copy of SAE J3016: https://www.sae.ora/standards/content/]3016 201806/

as the be repro duced A5-6,

andJI0M6 e o

Copyright @ 2004 SAE Intematio nal. The summary table may be ety oped and







ROBUSTNESS DEFENSE

Use map with known signs as safety mechanism for hard to recognize signs




BUGS IN SELF-DRIVING CARS

e Study of 499 bugs of autonomous driving systems during development

e Many traditional development bugs, including configuration bugs (27%),
build errors (16%), and documentation bugs

e All major components affected (planning 27%, perception 16%, localization
11%)

e Bugs in algorithm implementations (28%), often nontrivial, many symptoms

e Few safety-relevant bugs

Garcia, Joshua, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, and Qi Alfred Chen. "A Comprehensive Study
of Autonomous Vehicle Bugs." ICSE 2020


https://www.junjieshen.com/assets/pub/icse20-av-bugs.pdf

SAFETY CHALLENGES WIDELY RECOGNIZED

Being able to apply ML in safety-critical applications will
be important to my organization in the future| a)

V&V of features that rely on ML is recognized as a
particularly challenging area in my organization| b)

My organization is well-prepared for a future in which
V&V of safety-critical ML is commonplace| c)

L

Borg, Markus, et al. "Safely entering the deep: A review of verification and validation for machine learning and a
challenge elicitation in the automotive industry." arXiv preprint arXiv:1812.05389 (2018).
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https://arxiv.org/pdf/1812.05389

CHALLENGES DISCUSSED FOR SELF-DRIVING CARS

e No agreement on how to best develop safety-critical DNN

e Research focus on showcasing attacks or robustness improvements rather
than (system-level) engineering practices and processes

e Pioneering spirit of Al clashes with conservatism of safety engineering

e Practitioners prefer simulation and tests over formal/probabilistic methods

e No consensus on certification and regulation, gap in safety standards

Borg, Markus, et al. "Safely entering the deep: A review of verification and validation for machine learning and a
challenge elicitation in the automotive industry." arXiv preprint arXiv:1812.05389 (2018).


https://arxiv.org/pdf/1812.05389

SAFETY CAGES

Encapsulate ML component

e Observe, monitor with supervisor

e Anomaly/novelty/out-of-distribution detection

Safe-track backup solution with traditional safety engineering without ML

Borg, Markus, et al. "Safely entering the deep: A review of verification and validation for machine learning and a
challenge elicitation in the automotive industry." arXiv preprint arXiv:1812.05389 (2018).
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AUTOMATION COMPLACENCY
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IF TRADITIONAL
VERIFICATION DOESN'T
WORK, NOW WHAT?



SAFETY ASSURANCE WITH ML COMPONENTS

Consider ML components as unreliable, at most probabilistic guarantees
Testing, testing, testing (+ simulation)
= Focus on data quality & robustness
Adopt a system-level perspective!
Consider safe system design with unreliable components
= Traditional systems and safety engineering
= Assurance cases
Understand the problem and the hazards
= System level, goals, hazard analysis, world vs machine
= Specify end-to-end system behavior if feasible
Recent research on adversarial learning and safety in reinforcement learning



FOLLOW RESEARCH

e Understand safety problems and safety properties

e Understand verification techniques (testing, formal, and probabilistic)
e Understand adversarial attack and defense mechanisms

e Anomaly detection, out of distribution detection, drift detection

e Advances in interpretability and explainability

Human-ML interaction, humans in the loop designs and problems

Starting point: Huang, Xiaowei, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese Thamo, Min
Wu, and Xinping Yi. "A survey of safety and trustworthiness of deep neural networks: Verification, testing,
adversarial attack and defence, and interpretability." Computer Science Review 37 (2020): 100270.


https://arxiv.org/pdf/1812.08342

DON'T FORGET THE BASICS

e Hazard analysis

e Configuration management

e Requirements and design specifications
e Testing



BEYOND TRADITIONAL
SAFETY CRITICAL SYSTEMS



BEYOND TRADITIONAL SAFETY CRITICAL SYSTEMS

e Recall: Legal vs ethical

e Safety analysis not only for regulated domains (nuclear power plants,
medical devices, planes, cars, ...)

e Many end-user applications have a safety component

Examples?
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Speaker notes

What consequences should Twitter have foreseen? How should they intervene now that negative consequences of
interaction patterns are becoming apparent?



MENTAL HEALTH

= Q healthline SUBSCRIBE

HEALTH NEWS C\/ Fact Checked >

The FOMO Is Real: How Social Media
Increases Depression and Loneliness

Written by Gigen Mammoser on December 10, 2018

New research reveals how social media platforms like
Facebook can greatly affect your mental health.

—— A =y



https://www.healthline.com/health-news/social-media-use-increases-depression-and-loneliness
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https://www.healthline.com/health-news/social-media-use-increases-depression-and-loneliness
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ADDICTION

09:01 B A Q4 Eb64%

6 Q r/powerwashingporn

Posts About Menu

W29 Vv W1 7 Share Award

u/mtwannahockaloogie * 15h « v.redd.it

Freshening you're the backyard!

X

¢ = » o =P

10.



Speaker notes

Infinite scroll in applications removes the natural breaking point at pagination where one might reflect and stop use.



ADDICTION



NO MERCY NO MALICE

Robinhood Has Gamified Online
Trading Into an Addiction

Tech’'s obsession with addiction will hurt us all

7 Scott Galloway
U Jun 23 - 7 min read % j m n [] ooo

Warning: This post contains a discussion of suicide.

ddiction is the inability to stop consuming a chemical or pursuing an
Z & activity although it’s causing harm.

I engage with almost every substance or behavior associated with
addiction: alcohol, drugs, coffee, porn, sex, gambling, work, spending,

10.


https://marker.medium.com/robinhood-has-gamified-online-trading-into-an-addiction-cc1d7d989b0c

SOCIETY: UNEMPLOYMENT ENGINEERING /
DESKILLING

10.



Speaker notes
The dangers and risks of automating jobs.
Discuss issues around automated truck driving and the role of jobs.

See for example: Andrew Yang. The War on Normal People. 2019



SOCIETY: POLARIZATION

SUBSCRIBE

THE WALL STREET JOURNAL.

TECH

Facebook Executives Shut Down Efforts
to Make the Site Less Divisive

The social-media giant internally studied how it polarizes users, then
largely shelved the research

By Jeft Horwitz and Deena Seetharaman
May 26,2020 11:38 am ET

10.

9


https://www.wsj.com/articles/facebook-knows-it-encourages-division-top-executives-nixed-solutions-11590507499

Speaker notes

Recommendations for further readings: https://www.nytimes.com/column/kara-swisher,
https://podcasts.apple.com/us/podcast/recode-decode/id1011668648

Also isolation, Cambridge Analytica, collaboration with ICE, ...


https://www.nytimes.com/column/kara-swisher
https://podcasts.apple.com/us/podcast/recode-decode/id1011668648

ENVIRONMENTAL: ENERGY CONSUMPTION



NewsScientist m Q

SUBSCRIBE AND SAVE 69%

Creating an Al can be five times
worse for the planet than a car

000HO0O

TECHNOLOGY 6 June 2019

By Donna Lu



https://www.newscientist.com/article/2205779-creating-an-ai-can-be-five-times-worse-for-the-planet-than-a-car/

EXERCISE

Look at apps on your phone. Which apps have a safety risk and use machine
learning?

Consider safety broadly: including stress, mental health, discrimination, and
environment pollution




TAKEAWAY

Many systems have safety concerns

... hot just nuclear power plants, planes, cars, and medical devices

Do the right thing, even without regulation

Consider safety broadly: including stress, mental health, discrimination, and
environment pollution

Start with requirements and hazard analysis



SUMMARY

Adopt a safety mindset!

Defining safety: absence of harm to people, property, and environment
= Beyond traditional safety critical systems, affects many apps and

web services

Assume all components will eventually fail in one way or another, especially

ML components

Al goals are difficult to specify precisely, reward hacking

Hazard analysis to identify safety risks and requirements; classic safety

design at the system level

Model robustness can help with some problems

Self-driving cars are challenging and evolving
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