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INTRODUCTION ANDINTRODUCTION AND
MOTIVATIONMOTIVATION

Christian Kaestner
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LECTURE LOGISTICSLECTURE LOGISTICS
DURING A PANDEMICDURING A PANDEMIC

If you can hear me, open the participant panel in Zoom and check "yes"
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LEARNING GOALSLEARNING GOALS
Understand how AI components are parts of larger systems
Illustrate the challenges in engineering an AI-enabled system beyond
accuracy
Explain the role of specifications and their lack in machine learning and the
relationship to deductive and inductive reasoning
Summarize the respective goals and challenges of so�ware engineers vs
data scientists
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Data
Scientists

Software
Engineers

3 . 4



DATA SCIENTISTDATA SCIENTIST
O�en fixed dataset for training and
evaluation (e.g., PBS interviews)
Focused on accuracy
Prototyping, o�en Jupyter
notebooks or similar
Expert in modeling techniques and
feature engineering
Model size, updateability,
implementation stability typically
does not matter

SOFTWARE ENGINEERSOFTWARE ENGINEER
Builds a product
Concerned about cost,
performance, stability, release
time
Identify quality through customer
satisfaction
Must scale solution, handle large
amounts of data
Detect and handle mistakes,
preferably automatically
Maintain, evolve, and extend the
product over long periods
Consider requirements for
security, safety, fairness
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QUALITIES OF INTEREST ("ILITIES")QUALITIES OF INTEREST ("ILITIES")
Quality is about more than the absence of defects
Quality in use (effectiveness, efficiency, satisfaction, freedom of risk, ...)
Product quality (functional correctness and completeness, performance
efficiency, compatibility, usability, dependability, scalability, security,
maintainability, portability, ...)
Process quality (manageability, evolvability, predictability, ...)

"Quality is never an accident; it is always the result of high intention, sincere
effort, intelligent direction and skillful execution; it represents the wise
choice of many alternatives." (many attributions)
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SYLLABUS AND CLASSSYLLABUS AND CLASS
STRUCTURESTRUCTURE

17-445/17-645, Summer 2020, 12 units

Tuesday/Wednesday 3-4:20, here on zoom
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TEXTBOOKTEXTBOOK
Building Intelligent Systems: A Guide to

Machine Learning Engineering

by Geoff Hulten

Most chapters assigned at some point in the
semester

Supplemented with research articles, blog
posts, videos, podcasts, ...

 in the library

https://www.buildingintelligentsystems.com/

Electronic version
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https://www.buildingintelligentsystems.com/
https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/6lpsnm/alma991019649190004436
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INTRODUCTIONSINTRODUCTIONS
Let's go around the "room" for introductions:

Your (preferred name)
In two sentences your so�ware engineering background and goals
In two sentences your data science background, if any, and goals
One topic you are particularly interested in, if any?
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CORRECTNESS ANDCORRECTNESS AND
SPECIFICATIONSSPECIFICATIONS

DEDUCTIVE VS. INDUCTIVEDEDUCTIVE VS. INDUCTIVE
REASONINGREASONING
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WHO IS TO BLAME?WHO IS TO BLAME?
Algorithms.shortestDistance(g, "Tom", "Anne"); 
 
> ArrayOutOfBoundsException

Algorithms.shortestDistance(g, "Tom", "Anne"); 
 
> -1
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SPECIFICATIONS IN MACHINE LEARNING?SPECIFICATIONS IN MACHINE LEARNING?
/** 
  ???? 
*/
String transcribe(File audioFile);
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(Daniel Miessler, CC SA 2.0)
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https://danielmiessler.com/blog/the-difference-between-deductive-and-inductive-reasoning/


RESULTING SHIFT IN DESIGN THINKING?RESULTING SHIFT IN DESIGN THINKING?
From deductive reasoning to inductive reasoning...

From clear specifications to goals...

From guarantees to best effort...

What does this mean for so�ware engineering?

For decomposing so�ware systems?

For correctness of AI-enabled systems?

For safety?

For design, implementation, testing, deployment, operations?
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HOMEWORK 1: CASE STUDYHOMEWORK 1: CASE STUDY
Engineering issues in detecting malicous apps
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ARTIFICIAL INTELLIGENCEARTIFICIAL INTELLIGENCE
FOR SOFTWARE ENGINEERSFOR SOFTWARE ENGINEERS

(Part 1: Supervised Machine Learning and Notebooks)

Christian Kaestner

Required Reading: � Hulten, Geoff. “ .”
(2018), Chapters 16–18, 20.

Suggested complementary reading: � Géron, Aurélien. ”
”, 2nd Edition (2019), Ch 1.

Building Intelligent Systems: A Guide to Machine Learning Engineering

Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow
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https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/6lpsnm/alma991019649190004436
https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/6lpsnm/alma991019662775504436


LEARNING GOALSLEARNING GOALS
Understand how machine learning learns models from labeled data (basic
mental model)
Explain the steps of a typical machine learning pipeline and their
responsibilities and challenges
Understand the role of hyper-parameters
Appropriately use vocabulary for machine learning concepts
Apply steps of a machine-learning pipeline to build a simple model from
static labeled data
Evaluate a machine-learned classifier using cross-validation
Explain the benefits and drawbacks of notebooks
Demonstrate effective use of computational notebooks

4 . 2



DEFINING MACHINE LEARNING (SIMPLIFIED)DEFINING MACHINE LEARNING (SIMPLIFIED)
learn a function (called model)

by observing data

Examples:

Detecting cancer in an image
Transcribing an audio file
Detecting spam
Predicting recidivism
Detect suspicious activity in a credit card

Typically used when writing that function manually is hard because the problem
is hard or complex.

f( , , , . . . , ) → yx1 x2 x3 xn
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RUNNING EXAMPLE: HOUSE PRICE ANALYSISRUNNING EXAMPLE: HOUSE PRICE ANALYSIS
Given data about a house and its neighborhood, what is the likely sales price for

this house?

f(size, rooms, tax,neighborhood, . . . ) → price
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LINEAR REGRESSIONLINEAR REGRESSION
f(x) = α+ β ∗ x
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DECISION TREESDECISION TREES
Outlook Temperature Humidity Windy Play
overcast hot high false yes

overcast hot high false no

overcast hot high false yes

overcast cool normal true yes

overcast mild high true yes

overcast hot normal false yes

rainy mild high false yes

rainy cool normal false yes

rainy cool normal true no

rainy mild normal false yes

rainy mild high true no

sunny hot high false no

sunny hot high true no

sunny mild high false no

sunny cool normal false yes

sunny mild normal true yes

f(Outlook, Temperature, Humidity, Windy) =

Sunny Overcas Rainy

true false high Norma

Outlook

Windy Yes Humidity

No No No Yes
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OVERFITTING WITH DECISION TREESOVERFITTING WITH DECISION TREES
Outlook Temperature Humidity Windy Play
overcast hot high false yes

overcast hot high false no

overcast hot high false yes

overcast cool normal true yes

overcast mild high true yes

overcast hot normal false yes

rainy mild high false yes

rainy cool normal false yes

rainy cool normal true no

rainy mild normal false yes

rainy mild high true no

sunny hot high false no

sunny hot high true no

sunny mild high false no

sunny cool normal false yes

sunny mild normal true yes

The tree perfectly fits the data, except on overcast, hot
and humid days without wind, where there is not enough

data to distinguish 3 outcomes.

Not obvious that this tree will generalize well.

f(Outlook, Temperature, Humidity, Windy) =  
  IF Humidity ∈ [high]  
    IF Outlook ∈ [overcast,rainy] 
      IF Outlook ∈ [overcast]  
        IF Temperature ∈ [hot,cool]  
          true (0.667) 
          true (1.000) 
        IF Windy ∈ [FALSE]  
          true (1.000) 
          false (1.000) 
      false (1.000) 
    IF Windy ∈ [FALSE]  
      true (1.000) 
      IF Temperature ∈ [hot,cool]  
        IF Outlook ∈ [overcast]  
          true (1.000) 
          false (1.000) 
        true (1.000)
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ON TERMINOLOGYON TERMINOLOGY
The decisions in a model are called model parameter of the model
(constants in the resulting function, weights, coefficients), their values are
usually learned from the data
The parameters to the learning algorithm that are not the data are called
model hyperparameters
Degrees of freedom ~ number of model parameters

// max_depth and min_support are hyperparameters
def learn_decision_tree(data, max_depth, min_support): Model =  
  ... 
 
// A, B, C are model parameters of model f
def f(outlook, temperature, humidity, windy) = 
   if A==outlook 
      return B*temperature + C*windy > 10
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SEPARATE TRAINING AND VALIDATION DATASEPARATE TRAINING AND VALIDATION DATA
Always test for generalization on unseen validation data

Accuracy on training data (or similar measure) used during learning to find model
parameters

 = sign of overfitting

train_xs, train_ys, valid_xs, valid_ys = split(all_xs, all_ys) 
model = learn(train_xs, train_ys) 
 
accuracy_train = accuracy(model, train_xs, train_ys) 
accuracy_valid = accuracy(model, valid_xs, valid_ys)

accuracy_train >> accuracy_valid
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DETECTING OVERFITTINGDETECTING OVERFITTING
Change hyperparameter to detect training accuracy (blue)/validation accuracy

(red) at different degrees of freedom

(CC SA 3.0 by )Dake

demo time
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https://commons.wikimedia.org/wiki/File:Overfitting.png
https://github.com/ckaestne/seai/tree/S2020/lectures/02_aibasics1/extras/decisiontree


ACADEMIC ESCALATION: OVERFITTING ONACADEMIC ESCALATION: OVERFITTING ON
BENCHMARKSBENCHMARKS

(Figure by Andrea Passerini)
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http://localhost:1948/overfitting-benchmarks.png


MACHINE LEARNINGMACHINE LEARNING
PIPELINEPIPELINE

Graphic: Amershi, Saleema, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Kamar, Nachiappan
Nagappan, Besmira Nushi, and Thomas Zimmermann. " ."
In 2019 IEEE/ACM 41st International Conference on So�ware Engineering: So�ware Engineering in Practice (ICSE-

SEIP), pp. 291-300. IEEE, 2019.

So�ware engineering for machine learning: A case study
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https://www.microsoft.com/en-us/research/uploads/prod/2019/03/amershi-icse-2019_Software_Engineering_for_Machine_Learning.pdf


SIMILAR TO SPIRAL PROCESS MODEL OR AGILE?SIMILAR TO SPIRAL PROCESS MODEL OR AGILE?

1.Determine
objectives

2. Identify and 
resolve risks

3. Development 
and Test

4. Plan the 
next iteration

Progress
Cumulative cost

Requirements
plan

Concept of
operation

Concept of
requirements

Prototype 1 Prototype 2
Operational
prototype

Requirements Draft
Detailed
design

Code

IntegrationIntegration

Test

Implementation

Release

Test plan Verification 
& Validation

Development
plan

Verification 
& Validation

Review
30 days

24 h

Working increment
of the software

Sprint Backlog SprintProduct Backlog

(CC BY-SA 4.0, Lakeworks
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https://en.wikipedia.org/wiki/Scrum_(software_development)#/media/File:Scrum_process.svg)


DATA SCIENCE IS ITERATIVE AND EXPLORATORYDATA SCIENCE IS ITERATIVE AND EXPLORATORY

Source: Patel, Kayur, James Fogarty, James A. Landay, and Beverly Harrison.
" ." In

Proc. CHI, 2008.
Investigating statistical machine learning as a tool for so�ware development
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http://localhost:1948/accuracy-improvements.png
http://www.kayur.org/papers/chi2008.pdf


COMPUTATIONAL NOTEBOOKSCOMPUTATIONAL NOTEBOOKS
Origins in "literal programming",
interleaving text and code, treating
programs as literature (Knuth'84)
First notebook in Wolfram
Mathematica 1.0 in 1988
Document with text and code cells,
showing execution results under
cells
Code of cells is executed, per cell,
in a kernel
Many notebook implementations
and supported languages, Python
+ Jupyter currently most popular

demo time
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ARTIFICIAL INTELLIGENCEARTIFICIAL INTELLIGENCE
FOR SOFTWARE ENGINEERSFOR SOFTWARE ENGINEERS

(Part 2: Deep Learning, Symbolic AI)

Christian Kaestner

Required Reading: � Géron, Aurélien. ” ”, 2nd
Edition (2019), Ch 1.

Recommended Readings: � Géron, Aurélien. ”
”, 2nd Edition (2019), Ch 10 ("Introduction to Artificial Neural Networks with Keras"), � Flasiński,

Mariusz. " ." Springer (2016), Chapter 1 ("History of Artificial Intelligence") and
Chapter 2 ("Symbolic Artificial Intelligence"), � Pfeffer, Avi. " ." Manning (2016),

Chapter 1 or � Kevin Smith's recorded 

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow

Introduction to Artificial Intelligence
Practical Probabilistic Programming

tutorial on Probabilistic Programming
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https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/6lpsnm/alma991019662775504436
https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/6lpsnm/alma991019662775504436
https://doi.org/10.1007/978-3-319-40022-8
https://livebook.manning.com/book/practical-probabilistic-programming/chapter-1/
https://www.youtube.com/watch?v=9SEIYh5BCjc


LEARNING GOALSLEARNING GOALS
Give an overview of different AI problems and approaches
Explain at high level how deep learning works
Describe key characteristics of symbolic AI techniques and when to use
them
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AI
ML

DL

Artificial Intelligence:

Machine Learning:

Deep Learning:

computers acting humanly / thinking
humanly / thinking rationally / acting
rationally -- Russel and Norvig, 2003

A computer program is said to learn
from experience E with respect to some
task T and some performance measure
P, if its performance on T, as measured

by P, improves with experience E. -- Tom
Mitchell, 1997

specific learning technique based on
neural networks
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https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/1feg4j8/alma991019419529704436
https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/1feg4j8/alma991003098569704436


ARTIFICIAL INTELLIGENCEARTIFICIAL INTELLIGENCE
Acting humanly: Turing test
approach, requires natural
language processing, knowledge
representation, automated
reasoning, machine learning,
maybe vision and robotics
Thinking humanly: mirroring
human thinking, cognitive science
Thinking rationally: law of
thoughts, logic, patterns and
structures
Acting rationally: rational agents
interacting with environments

problem solving (e.g., search,
constraint satisfaction)
knowledge, reasoning, planning
(e.g., logic, knowledge
representation, probabilistic
reasoning)
learning (learning from examples,
knowledge in learning,
reinforcement learning)
communication, perceiving, and
acting (NLP, vision, robotics)

Russel and Norvig. " .", 2003Artificial Intelligence: A Modern Approach
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https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/1feg4j8/alma991019419529704436


COMMON PROBLEM CLASSESCOMMON PROBLEM CLASSES
Classification
Probability estimation
Regression
Ranking
Hybrids
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LEARNING PARADIGMSLEARNING PARADIGMS
Supervised learning -- labeled training data provided
Unsupervised learning -- training data without labels
Reinforcement learning -- agents learning from interacting with an
environment
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NEURAL NETWORKSNEURAL NETWORKS
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THRESHOLD LOGIC UNIT / PERCEPTRONTHRESHOLD LOGIC UNIT / PERCEPTRON
computing weighted sum of inputs + step function

e.g., step: (z) = if (z<0) 0 else 1

z = + +. . . + = ww1x1 w2x2 wnxn x
T

ϕ
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(matrix multiplications interleaved with step function)

(X) = ϕ( ⋅ ϕ( ⋅ X + ) +f , , ,Wh bh Wo bo
Wo Wh bh bo
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EXAMPLE SCENARIOEXAMPLE SCENARIO
MNIST Fashion dataset of 70k 28x28 grayscale pixel images, 10 output
classes
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NETWORK SIZENETWORK SIZE
50 Layer ResNet network -- classifying 224x224 images into 1000 categories

26 million weights, computes 16 million activations during inference,
168 MB to store weights as floats

OpenAI’s GPT-2 (2019) -- text generation
48 layers, 1.5 billion weights (~12 GB to store weights)
released model reduced to 117 million weights
trained on 7-8 GPUs for 1 month with 40GB of internet text from 8
million web pages
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CLASSIC SYMBOLIC AICLASSIC SYMBOLIC AI
(Good Old-Fashioned Artificial Intelligence)
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BOOLEAN SATISFIABILITYBOOLEAN SATISFIABILITY
Given a propositional formula over boolean variables, is there an assignment such

that the formula evaluates to true?

decidable, np complete, lots of search heuristics

(a ∨ b) ∧ (¬a ∨ c) ∧ ¬b
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ENCODING PROBLEMSENCODING PROBLEMS
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CONSTRAINT SATISFACTION PROBLEMS, SMTCONSTRAINT SATISFACTION PROBLEMS, SMT
Generalization beyond boolean options, numbers, strings, additions, optimization

Example: Job Scheduling

Tasks for assembling a car: { t1, t2, t3, t4, t5, t6 }; values denoting start time

max 30 min: 

t2 needs to be a�er t1, t1 takes 10 min: 

t3 and t4 needs to be a�er t2, take 2 min: 

t5 and t6 (5 min each) should not overlap: 

Goal: find valid assignment for all start times, or find valid assignment minimizing
the latest start time

< 30∀ntn

+ 10 ≤t1 t2

( + 2 ≤ ) ∧ ( + 2 ≤ )t2 t3 t2 t4

( + 5 ≤ ) ∨ ( + 5 ≤ )t5 t6 t6 t5
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PROBABILISTIC PROGRAMMING BY EXAMPLEPROBABILISTIC PROGRAMMING BY EXAMPLE
class Person { 
  val smokes = Flip(0.6) 
} 
def smokingInfluence(pair: (Boolean, Boolean)) = 
  if (pair._1 == pair._2) 3.0; else 1.0 
 
val alice, bob, clara = new Person
val friends = List((alice, bob), (bob, clara)) 
clara.smokes.observe(true) 
for { (p1, p2) <- friends }  
  ^^(p1.smokes, p2.smokes).setConstraint(smokingInfluence) 
 
... 
println("Probability of Alice smoking: " +  
        alg.probability(alice.smokes, true))
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PROBABILISTIC INFERENCEPROBABILISTIC INFERENCE
Answering queries about probabilistic models

Analytical probabilistic reasoning (e.g., variable elimination Bayes' rule) --
precise result, guarantees
Approximation (e.g., belief propagation)
Sampling (e.g., Markov chain Monte Carlo) -- probabilistic guarantees

println("Probability of burglary: " +  
        alg.probability(burglary, true)) 
 
println("Probability of Alice smoking: " +  
        alg.probability(alice.smokes, true))
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HOMEWORK 2: MODELINGHOMEWORK 2: MODELING
BASICSBASICS

Predicting Movie Popularity (2 weeks)
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MODEL QUALITYMODEL QUALITY
Christian Kaestner

Required reading:

� Hulten, Geoff. " " Apress, 2018,
Chapter 19 (Evaluating Intelligence).
� Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "

." In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 856-865. 2018.

Building Intelligent Systems: A Guide to Machine Learning Engineering.

Semantically equivalent adversarial rules for
debugging NLP models
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https://www.buildingintelligentsystems.com/
https://www.aclweb.org/anthology/P18-1079.pdf


LEARNING GOALSLEARNING GOALS
Select a suitable metric to evaluate prediction accuracy of a model and to
compare multiple models
Select a suitable baseline when evaluating model accuracy
Explain how so�ware testing differs from measuring prediction accuracy of
a model
Curate validation datasets for assessing model quality, covering
subpopulations as needed
Use invariants to check partial model properties with automated testing
Develop automated infrastructure to evaluate and monitor model quality
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THIS LECTURETHIS LECTURE
FIRST PART: MEASURING PREDICTION ACCURACYFIRST PART: MEASURING PREDICTION ACCURACY

the data scientist's perspective

SECOND PART: LEARNING FROM SOFTWARESECOND PART: LEARNING FROM SOFTWARE
TESTINGTESTING

how so�ware engineering tools may apply to ML
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"Programs which were written in order to determine the
answer in the first place. There would be no need to write

such programs, if the correct answer were known”
(Weyuker, 1982).

6 . 4



CASE STUDY: CANCER DETECTIONCASE STUDY: CANCER DETECTION
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THE SYSTEMS PERSPECTIVETHE SYSTEMS PERSPECTIVE
System is more than the model

Includes deployment, infrastructure, user interface, data infrastructure, payment
services, and o�en much more

Systems have a goal:

maximize sales
save lifes
entertainment
connect people

Models can help or may be essential in those goals, but are only one part

Today: Narrow focus on prediction accuracy of the model
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CANCER PREDICTION WITHIN A HEALTHCARECANCER PREDICTION WITHIN A HEALTHCARE
APPLICATIONAPPLICATION

(CC BY-SA 4.0, )Martin Sauter
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https://commons.wikimedia.org/wiki/Category:GNU_Health#/media/File:Gnu_health_2-8_gynocology_general.png


CONFUSION/ERROR MATRIXCONFUSION/ERROR MATRIX
Actually A Actually B Actually C

AI predicts A 10 6 2

AI predicts B 3 24 10

AI predicts C 5 22 82

Accuracy = correct predictions (diagonal) out of all predictions

Example's accuracy = = .70710+24+82
10+6+2+3+24+10+5+22+82
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IS 99% ACCURACY GOOD?IS 99% ACCURACY GOOD?
-> depends on problem; can be excellent, good, mediocre, terrible

10% accuracy can be good on some tasks (information retrieval)

Always compare to a base rate!

Reduction in error = 

from 99.9% to 99.99% accuracy = 90% reduction in error
from 50% to 75% accuracy = 50% reduction in error

(1−accurac )−(1−accurac )ybaseline yf

1−accuracybaseline
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TYPES OF MISTAKESTYPES OF MISTAKES
Two-class problem of predicting event A:

Actually A Actually not A

AI predicts A True Positive (TP) False Positive (FP)

AI predicts not A False Negative (FN) True Negative (TN)

True positives and true negatives: correct prediction

False negatives: wrong prediction, miss, Type II error

False positives: wrong prediction, false alarm, Type I error

6 . 10



MULTI-CLASS PROBLEMS VS TWO-CLASS PROBLEMMULTI-CLASS PROBLEMS VS TWO-CLASS PROBLEM
Actually A Actually B Actually C

AI predicts A 10 6 2

AI predicts B 3 24 10

AI predicts C 5 22 82

Act. A Act. not A

AI predicts A 10 8

AI predicts not A 8 138

Act. B Act. not B

AI predicts B 24 13

AI predicts not B 28 99
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(CC BY-SA 4.0 by )Walber
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https://en.wikipedia.org/wiki/Precision_and_recall#/media/File:Precisionrecall.svg
https://en.wikipedia.org/wiki/Precision_and_recall#/media/File:Precisionrecall.svg


FALSE POSITIVES AND FALSE NEGATIVES EQUALLYFALSE POSITIVES AND FALSE NEGATIVES EQUALLY
BAD?BAD?

Consider:

Recognizing cancer
Suggesting products to buy on e-commerce site
Identifying human trafficking at the border
Predicting high demand for ride sharing services
Predicting recidivism chance
Approving loan applications

No answer vs wrong answer?
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RECEIVER OPERATING CHARACTERISTIC (ROC)RECEIVER OPERATING CHARACTERISTIC (ROC)
CURVESCURVES

(CC BY-SA 3.0 by )BOR

https://en.wikipedia.org/wiki/Receiver_operating_characteristic#/media/File:Roccurves.png
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COMPARING PREDICTED AND EXPECTEDCOMPARING PREDICTED AND EXPECTED
OUTCOMESOUTCOMES

Mean Absolute Percentage Error

MAPE =

(  actual outcome,  predicted
outcome, for row )

Compute relative prediction error per
row, average over all rows

Rooms Crime
Rate ... Predicted

Price
Actual
Price

3 .01 ... 230k 250k

4 .01 ... 530k 498k

2 .03 ... 210k 211k

2 .02 ... 219k 210k

MAPE = 

=  = 

1
n
∑n

t=1
∣∣

−At Ft

At

∣∣

At Ft

t

(20/250 + 32/498 + 1/211 + 9/210)1
4

(0.08 + 0.064 + 0.005 + 0.043)1
4

0.048
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EVALUATING RANKINGSEVALUATING RANKINGS
Ordered list of results, true results should be ranked high

Common in information retrieval (e.g., search engines) and recommendations

Mean Average Precision

MAP@K = precision in first  results

Averaged over many queries

Rank Product Correct?

1 Juggling clubs true

2 Bowling pins false

3 Juggling balls false

4 Board games true

5 Wine false

6 Audiobook true

MAP@1 = 1, MAP@2 = 0.5, MAP@3 = 0.33,
...

K



Remember to compare against baselines! Baseline for shopping
recommendations?
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MODEL QUALITY IN NATURAL LANGUAGEMODEL QUALITY IN NATURAL LANGUAGE
PROCESSING?PROCESSING?

Highly problem dependent:

Classify text into positive or negative -> classification problem
Determine truth of a statement -> classification problem
Translation and summarization -> comparing sequences (e.g ngrams) to
human results with specialized metrics, e.g.  and 
Modeling text -> how well its probabilities match actual text, e.g., likelyhoold
or 

BLEU ROUGE

perplexity
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https://en.wikipedia.org/wiki/BLEU
https://en.wikipedia.org/wiki/ROUGE_(metric)
https://en.wikipedia.org/wiki/Perplexity


ANALOGY TO SOFTWAREANALOGY TO SOFTWARE
TESTINGTESTING

(this gets messy)
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MODEL TESTING?MODEL TESTING?

Rooms Crime
Rate ... Actual

Price

3 .01 ... 250k

4 .01 ... 498k

2 .03 ... 211k

2 .02 ... 210k

Fail the entire test suite for one wrong prediction?

assertEquals(250000,  
    model.predict([3, .01, ...])
assertEquals(498000,  
    model.predict([4, .01, ...])
assertEquals(211000,  
    model.predict([2, .03, ...])
assertEquals(210000,  
    model.predict([2, .02, ...])
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THE ORACLE PROBLEMTHE ORACLE PROBLEM
How do we know the expected output of a test?

Manually construct input-output pairs (does not scale, cannot automate)
Comparison against gold standard (e.g., alternative implementation,
executable specification)
Checking of global properties only -- crashes, buffer overflows, code
injections
Manually written assertions -- partial specifications checked at runtime

assertEquals(??, factorPrime(15485863));
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DIFFERENT EXPECTATIONS FOR PREDICTIONDIFFERENT EXPECTATIONS FOR PREDICTION
ACCURACYACCURACY

Not expecting that all predictions will be correct (80% accuracy may be very
good)
Data may be mislabeled in training or validation set
There may not even be enough context (features) to distinguish all training
outcomes

Lack of specifications
A wrong prediction is not necessarily a bug
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ANALOGY OF PERFORMANCE TESTING?ANALOGY OF PERFORMANCE TESTING?
Performance tests are not precise (measurement noise)

Averaging over repeated executions of the same test
Commonly using diverse benchmarks, i.e., multiple inputs
Need to control environment (hardware)

No precise specification
Regression tests
Benchmarking as open-ended comparison
Tracking results over time

@Test(timeout=100)  
public void testCompute() { 
   expensiveComputation(...); 
}
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MACHINE LEARNING ISMACHINE LEARNING IS
REQUIREMENTSREQUIREMENTS

ENGINEERINGENGINEERING
(my pet theory)

see also https://medium.com/@ckaestne/machine-learning-is-requirements-engineering-8957aee55ef4
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VALIDATION VS VERIFICATIONVALIDATION VS VERIFICATION
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EXAMPLE AND DISCUSSIONEXAMPLE AND DISCUSSION

Model learned from gathered data (~ interviews, sufficient? representative?)

Cannot equally satisfy all stakeholders, conflicting goals; judgement call,
compromises, constraints

Implementation is trivial/automatically generated

Does it meet the users' expectations?

Is the model compatible with other specifications? (fairness, robustness)

What if we cannot understand the model? (interpretability)

IF age between 18–20 and sex is male THEN predict arrest 
ELSE IF age between 21–23 and 2–3 prior offenses THEN predict ar
ELSE IF more than three priors THEN predict arrest 
ELSE predict no arrest
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CURATING VALIDATIONCURATING VALIDATION
DATADATA

(Learning from So�ware Testing?)
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VALIDATION DATA REPRESENTATIVE?VALIDATION DATA REPRESENTATIVE?
Validation data should reflect usage data
Be aware of data dri� (face recognition during pandemic, new patterns in
credit card fraud detection)
"Out of distribution" predictions o�en low quality (it may even be worth to
detect out of distribution data in production, more later)
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INDEPENDENCE OF DATA: TEMPORALINDEPENDENCE OF DATA: TEMPORAL
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NOT ALL INPUTS ARE EQUALNOT ALL INPUTS ARE EQUAL

"Call mom" "What's the weather tomorrow?" "Add asafetida to my shopping list"
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NOT ALL INPUTS ARE EQUALNOT ALL INPUTS ARE EQUAL

There Is a Racial Divide in Speech-Recognition Systems,
Researchers Say: Technology from Amazon, Apple, Google,
IBM and Microso� misidentified 35 percent of words from

people who were black. White people fared much better. --
NYTimes March 2020

6 . 30

https://www.nytimes.com/2020/03/23/technology/speech-recognition-bias-apple-amazon-google.html


IDENTIFY IMPORTANT INPUTSIDENTIFY IMPORTANT INPUTS
Curate Validation Data for Specific Problems and Subpopulations:

Regression testing: Validation dataset for important inputs ("call mom") --
expect very high accuracy -- closest equivalent to unit tests
Uniformness/fairness testing: Separate validation dataset for different
subpopulations (e.g., accents) -- expect comparable accuracy
Setting goals: Validation datasets for challenging cases or stretch goals --
accept lower accuracy

Derive from requirements, experts, user feedback, expected problems etc. Think
blackbox testing.
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BLACK-BOX TESTING TECHNIQUES ASBLACK-BOX TESTING TECHNIQUES AS
INSPIRATION?INSPIRATION?

Boundary value analysis
Partition testing & equivalence classes
Combinatorial testing
Decision tables

Use to identify subpopulations (validation datasets), not individual tests.



6 . 32



EXAMPLES OF INVARIANTSEXAMPLES OF INVARIANTS
Credit rating should not depend on gender:

Synonyms should not change the sentiment of text:

Negation should swap meaning:

Robustness around training data:

Low credit scores should never get a loan (sufficient conditions for
classification, "anchors"):

Identifying invariants requires domain knowledge of the problem!

∀x. f(x[gender ← male]) = f(x[gender ← female])

∀x. f(x) = f(replace(x, "is not", "isn't"))

∀x ∈ "X is Y". f(x) = 1 − f(replace(x, " is ", " is not "))

∀x ∈ training data. ∀y ∈ mutate(x, δ). f(x) = f(y)

∀x.x. score < 649 ⇒ ¬f(x)
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METAMORPHIC TESTINGMETAMORPHIC TESTING
Formal description of relationships among inputs and outputs (Metamorphic

Relations)

In general, for a model  and inputs  define two functions to transform inputs
and outputs  and  such that:

e.g.  and 

f x

gI gO

∀x. f( (x)) = (f(x))gI gO

(x) = replace(x, " is ", " is not ")gI (x) = ¬xgO
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ONE MORE THING: SIMULATION-BASED TESTINGONE MORE THING: SIMULATION-BASED TESTING
Derive input-output pairs from
simulation, esp. in vision systems
Example: Vision for self-driving cars:

Render scene -> add noise ->
recognize -> compare recognized
result with simulator state

Quality depends on quality of the
simulator and how well it can produce
inputs from outputs:

examples: render picture/video,
synthesize speech, ...
Less suitable where input-output
relationship unknown, e.g.,
cancer detection, housing price
prediction, shopping
recommendations

simulation prediction

output

input

Further readings: Zhang, Mengshi, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid. "DeepRoad: GAN-based metamorphic
testing and input validation framework for autonomous driving systems." In Proceedings of the 33rd ACM/IEEE International Conference

on Automated So�ware Engineering, pp. 132-142. 2018.
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CONTINUOUS INTEGRATIONCONTINUOUS INTEGRATION
FOR MODEL QUALITYFOR MODEL QUALITY
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SPECIALIZED CI SYSTEMSSPECIALIZED CI SYSTEMS

Renggli et. al, 
, SysML 2019

Continuous Integration of Machine Learning Models with ease.ml/ci: Towards a Rigorous Yet
Practical Treatment
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http://www.sysml.cc/doc/2019/162.pdf


DASHBOARDS FOR COMPARING MODELSDASHBOARDS FOR COMPARING MODELS

Matei Zaharia. , 2018Introducing MLflow: an Open Source Machine Learning Platform

https://databricks.com/blog/2018/06/05/introducing-mlflow-an-open-source-machine-learning-platform.html
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FROM MODELS TO AI-FROM MODELS TO AI-
ENABLED SYSTEMSENABLED SYSTEMS

Christian Kaestner

� Hulten, Geoff. "Building Intelligent Systems: A Guide to Machine Learning Engineering." (2018), Chapters 5
(Components of Intelligent Systems).
� Sculley, David, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary,
Michael Young, Jean-Francois Crespo, and Dan Dennison. "

." In Advances in neural information processing systems, pp. 2503-2511. 2015.
Hidden technical debt in machine learning

systems

7 . 1

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf


LEARNING GOALSLEARNING GOALS
Explain how machine learning fits into the larger picture of building and
maintaining production systems
Describe the typical components relating to AI in an AI-enabled system and
typical design decisions to be made
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TEMI TRANSCRIPTION SERVICETEMI TRANSCRIPTION SERVICE

https://www.temi.com/
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MICROSOFT POWERPOINTMICROSOFT POWERPOINT

Read more: , Azure
Blog, March 2020

How Azure Machine Learning enables PowerPoint Designer
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https://azure.microsoft.com/en-us/blog/how-azure-machine-learning-enables-powerpoint-designer/


FALL DETECTION DEVICESFALL DETECTION DEVICES

(various devices explored, including smart watches, hearing aids, and wall and
floor sensors)

Read more: , MobiHealthNews,
2019

How fall detection is moving beyond the pendant

7 . 5

https://www.mobihealthnews.com/content/how-fall-detection-moving-beyond-pendant


GOOGLE ADD FRAUD DETECTIONGOOGLE ADD FRAUD DETECTION

From: Sculley, D., M. Otey, M. Pohl, B. Spitznagel, J. Hainsworth, and Y. Zhou.
Detecting Adversarial Advertisements in the Wild. In Proc. KDD, 2011.
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THINKING ABOUT SYSTEMSTHINKING ABOUT SYSTEMS
Holistic approach, looking at the larger picture, involving all stakeholders
Looking at relationships and interactions among components and
environments

Everything is interconnected
Combining parts creates something new with emergent behavior
Understand dynamics, be aware of feedback loops, actions have
effects

Understand how humans interact with the system

Leyla Acaroglu. " ." Blogpost 2017

A system is a set of inter-related components that work
together in a particular environment to perform whatever
functions are required to achieve the system's objective --

Donella Meadows

Tools for Systems Thinkers: The 6 Fundamental Concepts of Systems Thinking
7 . 7

https://medium.com/disruptive-design/tools-for-systems-thinkers-the-6-fundamental-concepts-of-systems-thinking-379cdac3dc6a


ELEMENTS OF AN INTELLIGENT SYSTEMELEMENTS OF AN INTELLIGENT SYSTEM
Meaningful objective: goals, requirements, business case
Intelligent experience: user interactions -- presenting model predictions to
users; user interactions; eliciting feedback, telemetry
Intelligence implementation: infrastructure -- learning and serving the
model and collecting feedback (telemetry)
Intelligence creation: learning and evaluating models
Orchestration: operations -- maintaining and updating the system over
time, debugging, countering abuse
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DESIGNING INTELLIGENT EXPERIENCESDESIGNING INTELLIGENT EXPERIENCES
How to use the output of a model's
prediction (for a goal)?
Design considerations:

How to present prediction
to a user? Suggestions or
automatically take actions?
How to effectively influence
the user's behavior toward
the system's goal?
How to minimize the
consequences of flawed
predictions?
How to collect data to
continue to learn from users
and mistakes?

Automatic slide design:

7 . 9



FACTORS IN CASE STUDIESFACTORS IN CASE STUDIES
Consider: forcefulness, frequency, value, cost, model quality

Automatic slide design: 
Fall detection: 
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INITIAL TELEMETRY IDEAS?INITIAL TELEMETRY IDEAS?
Identify: usage, mistakes, cost of mistakes, benefits to user, benefits to goals

Automatic slide design: 
Fall detection: 
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THE SMART TOASTERTHE SMART TOASTER

the toaster may (occasionally) burn my toast, but should
never burn down my kitchen
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SAFEGUARDS / GUARDRAILSSAFEGUARDS / GUARDRAILS
Hard constraints overrule model

heat = (temperatureReading < MAX) &&
continueToasting(...)

External hardware or so�ware failsafe mechanisms
outside the model, external observer, e.g., thermal fuses

(Image CC BY-SA 4.0, C J Cowie)
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INFRASTRUCTURE FOR ML COMPONENTSINFRASTRUCTURE FOR ML COMPONENTS

This was 2015; many of those boxes are getting increasingly standardized these
days.

Graphic from Sculley, et al. " ."
In Proc NIPS, 2015.

Hidden technical debt in machine learning systems
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THINKING IN PIPELINES OVER MODELSTHINKING IN PIPELINES OVER MODELS
In production systems, models need to be deployed and updated
Consider the entire pipeline, not just the model

Quality assurance, reproduciblity, repeatability, debugging
Modifiability, agility
Training cost and scalability
Data availability, data wrangling cost
Telemetry

Reported as one of the key challenges in production machine learning

Graphic: Amershi et al. " ." In Proc ICSE-SEIP, 2019.
Key challenge claim: O'Leary and Uchida. "

." Proc. MLSys, 2020.

So�ware engineering for machine learning: A case study
Common problems with Creating Machine Learning Pipelines

from Existing Code

https://www.microsoft.com/en-us/research/uploads/prod/2019/03/amershi-icse-2019_Software_Engineering_for_Machine_Learning.pdf
https://research.google/pubs/pub48984.pdf
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GOALS AND SUCCESSGOALS AND SUCCESS
MEASURES FOR AI-MEASURES FOR AI-
ENABLED SYSTEMSENABLED SYSTEMS

Christian Kaestner

Required Readings: � Hulten, Geoff. "Building Intelligent Systems: A Guide to Machine Learning Engineering."
(2018), Chapters 2 (Knowing when to use IS), 4 (Defining the IS’s Goals) and 15 (Intelligent Telemetry)

Suggested complementary reading: � Ajay Agrawal, Joshua Gans, Avi Goldfarb. “
” 2018

Prediction Machines: The Simple
Economics of Artificial Intelligence

8 . 1

https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/6lpsnm/alma991019698987304436


LEARNING GOALSLEARNING GOALS
Judge when to apply AI for a problem in a system
Define system goals and map them to goals for the AI component
Design and implement suitable measures and corresponding telemetry
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WHEN NOT TO USE MACHINE LEARNING?WHEN NOT TO USE MACHINE LEARNING?
If clear specifications are available
Simple heuristics are good enough
Cost of building and maintaining the system outweighs the benefits (see
technical debt paper)
Correctness is of utmost importance
Only use ML for the hype, to attract funding

Examples?
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DISCUSSION: SPOTIFYDISCUSSION: SPOTIFY
Big problem? Open ended? Time changing? Hard? Partial system viable? Data

continuously available? Influence objectives? Cost effective?

8 . 4
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AI AS PREDICTION MACHINESAI AS PREDICTION MACHINES

AI: Higher accuracy predictions at much
much lower cost

May use new, cheaper predictions for
traditional tasks (examples?)

May now use predictions for new kinds
of problems (examples?)

May now use more predictions than
before

(Analogies: Reduced cost of light,
reduced cost of search with the internet)
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PREDICTING THE BEST ROUTEPREDICTING THE BEST ROUTE
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AUTOMATION IN CONTROLLED ENVIRONMENTSAUTOMATION IN CONTROLLED ENVIRONMENTS
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THE COST AND VALUE OF DATATHE COST AND VALUE OF DATA
(1) Data for training, (2) input data for decisions, (3) telemetry data for
continued improving
Collecting and storing data can be costly (direct and indirect costs, including
reputation/privacy)
Diminishing returns of data: at some point, even more data has limited
benefits
Return on investment: investment in data vs improvement in prediction
accuracy
May need constant access to data to update models

8 . 8





� Ajay Agrawal, Joshua Gans, Avi Goldfarb. “ ”
2018

Prediction Machines: The Simple Economics of Artificial Intelligence

8 . 9

https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/6lpsnm/alma991019698987304436


COST PER PREDICTIONCOST PER PREDICTION
Useful conceptual measure, factoring in all costs

Development cost
Data aquisition
Learning cost, retraining cost
Operating cost
Debugging and service cost
Possibly: Cost of deadling with incorrect prediction consequences
(support, manual interventions, liability)
...
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AI RISKSAI RISKS
Discrimination and thus liability
Creating false confidence when predictions are poor
Risk of overall system failure, failure to adjust
Leaking of intellectual property
Vulnerable to attacks if learning data, inputs, or telemetry can be influenced

Societal risks
Focus on few big players (economies of scale), monopolization,
inequality
Prediction accuracy vs privacy
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LAYERS OF SUCCESSLAYERS OF SUCCESS
MEASURESMEASURES

Organizational objectives:
Innate/overall goals of the
organization
Leading indicators: Measures
correlating with future success,
from the business' perspective
User outcomes: How well the
system is serving its users, from
the user's perspective
Model properties: Quality of the
model used in a system, from the
model's perspective

Some are easier to measure then others
(telemetry), some are noisier than

others, some have more lag

Model properties

User outcomes

Leading indicators

Organizational objectives
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EXERCISE: AUTOMATING ADMISSION DECISIONSEXERCISE: AUTOMATING ADMISSION DECISIONS
TO MASTER'S PROGRAMTO MASTER'S PROGRAM

Discuss in groups, breakout rooms

What are the goals behind automating admissions decisions?

Organizational objectives, leading indicators, user outcomes, model properties?

Report back in 10 min
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EVERYTHING IS MEASURABLEEVERYTHING IS MEASURABLE
If X is something we care about, then X, by definition, must be detectable.

How could we care about things like “quality,” “risk,” “security,” or
“public image” if these things were totally undetectable, directly or
indirectly?
If we have reason to care about some unknown quantity, it is because
we think it corresponds to desirable or undesirable results in some
way.

If X is detectable, then it must be detectable in some amount.
If you can observe a thing at all, you can observe more of it or less of
it

If we can observe it in some amount, then it must be measurable.

But: Not every measure is precise, not every measure is cost effective

� Douglas Hubbard, “ " 2014How to Measure Anything: finding the value of intangibles in business 8 . 14

https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/1feg4j8/alma991019515498904436


MEASUREMENT SCALESMEASUREMENT SCALES
Scale: The type of data being measured; dictates what sorts of analysis/arithmetic is
legitimate or meaningful.
Nominal: Categories ( , frequency, mode, ...)

e.g., biological species, film genre, nationality
Ordinal: Order, but no meaningful magnitude ( , median, rank correlation, ...)

Difference between two values is not meaningful
Even if numbers are used, they do not represent magnitude!
e.g., weather severity, complexity classes in algorithms

Interval: Order, magnitude, but no definition of zero ( , mean, variance, ...)
0 is an arbitrary point; does not represent absence of quantity
Ratio between values are not meaningful
e.g., temperature (C or F)

Ratio: Order, magnitude, and zero ( , geometric mean)
e.g., mass, length, temperature (Kelvin)

Aside: Understanding scales of features is also useful for encoding or selecting learning
strategies in ML

=, ≠

<, >

+, −

∗, /, log,  √
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EXERCISE: SPECIFICEXERCISE: SPECIFIC
METRICS FOR SPOTIFYMETRICS FOR SPOTIFY

GOALS?GOALS?
Organization objectives?
Leading indicators?
User outcomes?
Model properties?
What are their scales?

8 . 16
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TRADE-OFFS AMONG AITRADE-OFFS AMONG AI
TECHNIQUESTECHNIQUES

Christian Kaestner

With slides adopted from Eunsuk Kang

Required reading: � Vogelsang, Andreas, and Markus Borg. "
." In Proc. of the 6th International Workshop on Artificial Intelligence for

Requirements Engineering (AIRE), 2019.

Requirements Engineering for Machine Learning:
Perspectives from Data Scientists

9 . 1

https://arxiv.org/pdf/1908.04674.pdf


LEARNING GOALSLEARNING GOALS
Describe the most common models and learning strategies used for AI
components and summarize how they work
Organize and prioritize the relevant qualities of concern for a given project
Plan and execute an evaluation of the qualities of alternative AI components
for a given purpose

9 . 2



TODAY'S CASE STUDY: LANE ASSISTTODAY'S CASE STUDY: LANE ASSIST



Image CC BY-SA 4.0 by Ian Maddox
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https://commons.wikimedia.org/wiki/User:Isnoop


QUALITYQUALITY
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ATTRIBUTESATTRIBUTES

Quality attributes: How well the product (system) delivers its functionality
(usability, reliability, availability, security...)
Project attributes: Time-to-market, development & HR cost...
Design attributes: Type of AI method used, accuracy, training time,
inference time, memory usage...
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CONSTRAINTSCONSTRAINTS
Constraints define the space of attributes for valid design solutions
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ACCURACY IS NOT EVERYTHINGACCURACY IS NOT EVERYTHING
Beyond prediction accuracy, what qualities may be relevant for an AI component?

9 . 7



EXAMPLES OF QUALITIES TO CONSIDEREXAMPLES OF QUALITIES TO CONSIDER
Accuracy
Correctness guarantees? Probabilistic guarantees (--> symbolic AI)
How many features? Interactions among features?
How much data needed? Data quality important?
Incremental training possible?
Training time, memory need, model size -- depending on training data
volume and feature size
Inference time, energy efficiency, resources needed, scalability
Interpretability/explainability
Robustness, reproducibility, stability
Security, privacy
Fairness
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INTERPRETABILITY/EXPLAINABILITYINTERPRETABILITY/EXPLAINABILITY
*"Why did the model predict X?"*

Explaining predictions + Validating Models + Debugging

Some models inherently simpler to understand

Some tools may provide post-hoc explanations

Explanations may be more or less truthful

How to measure interpretability?

more in a later lecture

IF age between 18–20 and sex is male THEN predict arrest 
ELSE IF age between 21–23 and 2–3 prior offenses THEN predict ar
ELSE IF more than three priors THEN predict arrest 
ELSE predict no arrest
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ROBUSTNESSROBUSTNESS

Small input modifications may change output

Small training data modifications may change predictions

How to measure robustness?

more in a later lecture

Image source: OpenAI blog
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https://openai.com/blog/adversarial-example-research/


FAIRNESSFAIRNESS
Does the model perform differently for different populations?

Many different notions of fairness

O�en caused by bias in training data

Enforce invariants in model or apply corrections outside model

Important consideration during requirements solicitation!

more in a later lecture

IF age between 18–20 and sex is male THEN predict arrest 
ELSE IF age between 21–23 and 2–3 prior offenses THEN predict ar
ELSE IF more than three priors THEN predict arrest 
ELSE predict no arrest

9 . 11



SOME TRADEOFFS OFSOME TRADEOFFS OF
COMMON ML TECHNIQUESCOMMON ML TECHNIQUES

Image: Scikit Learn Tutorial
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WHICH METHOD FOR CREDIT SCORING?WHICH METHOD FOR CREDIT SCORING?

Linear regression, decision tree, neural network, or k-NN?

Image CC-BY-2.0 by Pne

9 . 13
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WHICH METHOD FOR VIDEO RECOMMENDATIONS?WHICH METHOD FOR VIDEO RECOMMENDATIONS?

Linear regression, decision tree, neural network, or k-NN?

(Youtube: 500 hours of videos uploaded per sec)
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TRADEOFF ANALYSISTRADEOFF ANALYSIS

C

Pareto

A

B

f2(A) < f2(B)

f1

f2

f1(A) > f1(B)
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TRADE-OFFS: COST VS ACCURACYTRADE-OFFS: COST VS ACCURACY

"We evaluated some of the new methods offline but the additional accuracy gains
that we measured did not seem to justify the engineering effort needed to bring them

into a production environment.”

Amatriain & Basilico. , Netflix Technology Blog (2012)Netflix Recommendations: Beyond the 5 stars

https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
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TRADE-OFFS: ACCURACY VS INTERPRETABILITYTRADE-OFFS: ACCURACY VS INTERPRETABILITY

Bloom & Brink. , Presentation at
O'Reilly Strata Conference (2014).

Overcoming the Barriers to Production-Ready Machine Learning Workflows

https://conferences.oreilly.com/strata/strata2014/public/schedule/detail/32314


9 . 17



HOMEWORK 3: TRADEOFFHOMEWORK 3: TRADEOFF
ANALYSISANALYSIS

Compare 3 learning techniques

(10 qualities, metrics, measurement, memo)
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RISK AND PLANNING FORRISK AND PLANNING FOR
MISTAKESMISTAKES

Christian Kaestner

With slides adopted from Eunsuk Kang

Required reading: � Hulten, Geoff. "Building Intelligent Systems: A Guide to Machine Learning Engineering." (2018),
Chapters 6–8 (Why creating IE is hard, balancing IE, modes of intelligent interactions) and 24 (Dealing with

Mistakes)
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LEARNING GOALS:LEARNING GOALS:
Analyze how mistake in an AI component can influence the behavior of a
system
Analyze system requirements at the boundary between the machine and
world
Evaluate risk of a mistake from the AI component using fault trees
Design and justify a mitigation strategy for a concrete system

10 . 2



10 . 3



Cops raid music fan’s flat a�er Alexa Amazon Echo device
‘holds a party on its own’ while he was out Oliver

Haberstroh's door was broken down by irate cops a�er
neighbours complained about deafening music blasting

from Hamburg flat

https://www.thesun.co.uk/news/4873155/cops-raid-german-blokes-house-a�er-
his-alexa-music-device-held-a-party-on-its-own-while-he-was-out/

News broadcast triggers Amazon Alexa devices to purchase
dollhouses.

https://www.snopes.com/fact-check/alexa-orders-dollhouse-and-cookies/
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https://www.thesun.co.uk/news/4873155/cops-raid-german-blokes-house-after-his-alexa-music-device-held-a-party-on-its-own-while-he-was-out/
https://www.snopes.com/fact-check/alexa-orders-dollhouse-and-cookies/
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SOURCES OF WRONGSOURCES OF WRONG
PREDICTIONSPREDICTIONS
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CORRELATION VS CAUSATIONCORRELATION VS CAUSATION
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CONFOUNDING VARIABLESCONFOUNDING VARIABLES

spurious correlatio

causa

causa

Independent Var.

Dependent Var.

Confounding Var.

spurious correlatio

causa

causa

Coffee

Cancer

Smoking
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HIDDEN CONFOUNDSHIDDEN CONFOUNDS
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REVERSE CAUSALITYREVERSE CAUSALITY
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OTHER ISSUESOTHER ISSUES
Insufficient training data
Noisy training data
Biased training data
Overfitting
Poor model fit, poor model selection, poor hyperparameters
Missing context, missing important features
Noisy inputs
"Out of distribution" inputs
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ML MODELS MAKE CRAZY MISTAKESML MODELS MAKE CRAZY MISTAKES
Humans o�en make predicable mistakes

most mistakes near to correct answer, distribution of mistakes
ML models may be wildly wrong when they are wrong

especially black box models may use (spurious) correlations humans
would never think about
may be very confident about wrong answer
"fixing" one mistake may cause others
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ACCEPTING MISTAKESACCEPTING MISTAKES
Never assume all predictions will be correct or close
Always expect random, unpredictable mistakes to some degree, including
results that are wildly wrong
Best efforts at more data, debugging, "testing" likely will not eliminate the
problem

Hence: Anticipate existence of mistakes, focus on worst case analysis and
mitigation outside the model -- system perspective needed

Alternative paths: symbolic reasoning, interpretable models, and restricting
predictions to "near" training data
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COMMON STRATEGIES TOCOMMON STRATEGIES TO
HANDLE MISTAKESHANDLE MISTAKES
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GUARDRAILSGUARDRAILS
So�ware or hardware overrides outside the AI component
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REDUNDANCY AND VOTINGREDUNDANCY AND VOTING
Train multiple models, combine with heuristics, vote on results

Ensemble learning, reduces overfitting
May learn the same mistakes, especially if data is biased
Hardcode known rules (heuristics) for some inputs -- for important inputs

Examples?
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HUMAN IN THE LOOPHUMAN IN THE LOOP
Less forceful interaction, making suggestions, asking for confirmation

AI and humans are good at predictions in different settings
e.g., AI better at statistics at scale and many factors; humans
understand context and data generation process and o�en better
with thin data (see known unknowns)

AI for prediction, human for judgment?
But

Notification fatigue, complacency, just following predictions; see
Tesla autopilot
Compliance/liability protection only?

Deciding when and how to interact
Lots of UI design and HCI problems

Examples?
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UNDOABLE ACTIONSUNDOABLE ACTIONS
Design system to reduce consequence of wrong predictions, allowing humans to

override/undo

Examples?
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REVIEW INTERPRETABLE MODELSREVIEW INTERPRETABLE MODELS
Use interpretable machine learning and have humans review the rules

-> Approve the model as specification

IF age between 18–20 and sex is male THEN predict arrest 
ELSE IF age between 21–23 and 2–3 prior offenses THEN predict ar
ELSE IF more than three priors THEN predict arrest 
ELSE predict no arrest
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RISK ANALYSIS: WHAT'S THE WORST THAT COULDRISK ANALYSIS: WHAT'S THE WORST THAT COULD
HAPPEN?HAPPEN?

10 . 21



FAULT TREE EXAMPLEFAULT TREE EXAMPLE

Every tree begins with a TOP event (typically a violation of a requirement)
Every branch of the tree must terminate with a basic event

Figure from Fault Tree Analysis and Reliability Block Diagram (2016), Jaroslav Menčík.
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FAILURE MODE AND EFFECTS ANALYSIS (FMEA)FAILURE MODE AND EFFECTS ANALYSIS (FMEA)

A forward search technique to identify potential hazards
Widely used in aeronautics, automotive, healthcare, food services,
semiconductor processing, and (to some extent) so�ware
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HAZARD AND INTEROPERABILITY STUDY (HAZOP)HAZARD AND INTEROPERABILITY STUDY (HAZOP)
identify hazards and component fault scenarios through guided inspection of

requirements

10 . 24



MACHINE VS WORLDMACHINE VS WORLD

No so�ware lives in vacuum; every system is deployed as part of the world
A requirement describes a desired state of the world (i.e., environment)
Machine (so�ware) is created to manipulate the environment into this state

10 . 25



SHARED PHENOMENASHARED PHENOMENA

Shared phenomena: Interface between the world & machine (actions,
events, dataflow, etc.,)
Requirements (REQ) are expressed only in terms of world phenomena
Assumptions (ENV) are expressed in terms of world & shared phenomena
Specifications (SPEC) are expressed in terms of machine & shared
phenomena
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FEEDBACK LOOPS AND ADVERSARIESFEEDBACK LOOPS AND ADVERSARIES

Feedback loops: Behavior of the machine affects the world, which affects
inputs to the machine
Data dri�: Behavior of the world changes over time, assumptions no longer
valid
Adversaries: Bad actors deliberately may manipulate inputs, violate
environment assumptions

Examples?
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SOFTWARE ARCHITECTURESOFTWARE ARCHITECTURE
OF AI-ENABLED SYSTEMSOF AI-ENABLED SYSTEMS

Christian Kaestner

Required reading:

� Hulten, Geoff. " " Apress, 2018,
Chapter 13 (Where Intelligence Lives).
� Daniel Smith. " ." TheoryLane Blog Post. 2017.

Building Intelligent Systems: A Guide to Machine Learning Engineering.

Exploring Development Patterns in Data Science

11 . 1

https://www.buildingintelligentsystems.com/
https://www.theorylane.com/2017/10/20/some-development-patterns-in-data-science/


LEARNING GOALSLEARNING GOALS
Create architectural models to reason about relevant characteristics
Critique the decision of where an AI model lives (e.g., cloud vs edge vs
hybrid), considering the relevant tradeoffs
Deliberate how and when to update models and how to collect telemetry

11 . 2



SOFTWARE ARCHITECTURESOFTWARE ARCHITECTURE

Requirements Miracle / genius developers Implementation

11 . 3



CASE STUDY: TWITTERCASE STUDY: TWITTER

11 . 4
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WHAT CAN WE REASON ABOUT?WHAT CAN WE REASON ABOUT?

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. " " ACM SIGOPS operating
systems review. Vol. 37. No. 5. ACM, 2003.

The Google file system.

11 . 8

https://ai.google/research/pubs/pub51.pdf


CASE STUDY: AUGMENTEDCASE STUDY: AUGMENTED
REALITY TRANSLATIONREALITY TRANSLATION

11 . 9



WHERE SHOULD THEWHERE SHOULD THE
MODEL LIVE?MODEL LIVE?

Glasses
Phone
Cloud

What qualities are relevant for the
decision?
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WHEN WOULD ONE USE THE FOLLOWINGWHEN WOULD ONE USE THE FOLLOWING
DESIGNS?DESIGNS?

Static intelligence in the product
Client-side intelligence
Server-centric intelligence
Back-end cached intelligence
Hybrid models
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TELEMETRY TRADEOFFSTELEMETRY TRADEOFFS
What data to collect? How much? When?

Estimate data volume and possible bottlenecks in system.
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ARCHITECTURAL DECISION:ARCHITECTURAL DECISION:
UPDATING MODELSUPDATING MODELS

Design for change!
Models are rarely static outside the lab
Data dri�, feedback loops, new features, new requirements
When and how to update models?
How to version? How to avoid mistakes?

11 . 13



ARCHITECTURES AND PATTERNSARCHITECTURES AND PATTERNS
The Big Ass Script Architecture
Decoupled multi-tiered architecture (data vs data analysis vs reporting;
separate business logic from ML)
Microservice architecture (multiple learning and inference services)
Gateway Routing Architecture

Pipelines
Data lake, lambda architecture
Reuse between training and serving pipelines
Continuous deployment, ML versioning, pipeline testing

Daniel Smith. " ." TheoryLane Blog Post. 2017.
Washizaki, Hironori, Hiromu Uchida, Foutse Khomh, and Yann-Gaël Guéhéneuc. "

." Dra�, 2019

Exploring Development Patterns in Data Science
Machine Learning

Architecture and Design Patterns

11 . 14

https://www.theorylane.com/2017/10/20/some-development-patterns-in-data-science/
http://www.washi.cs.waseda.ac.jp/wp-content/uploads/2019/12/IEEE_Software_19__ML_Patterns.pdf


READYMADE AI COMPONENTS IN THE CLOUDREADYMADE AI COMPONENTS IN THE CLOUD
Data Infrastructure

Large scale data storage, databases, stream (MongoDB, Bigtable,
Kafka)

Data Processing
Massively parallel stream and batch processing (Sparks, Hadoop, ...)
Elastic containers, virtual machines (docker, AWS lambda, ...)

AI Tools
Notebooks, IDEs, Visualization
Learning Libraries, Frameworks (tensorflow, torch, keras, ...)

Models
Image, face, and speech recognition, translation
Chatbots, spell checking, text analytics
Recommendations, knowledge bases
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HOMEWORK 4:HOMEWORK 4:
REQUIREMENTS ANDREQUIREMENTS AND

ARCHITECTUREARCHITECTURE
Smart dashcam to detect missing children

(Goals, risks, deployment alternatives, telemetry)
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QUALITY ASSESSMENT INQUALITY ASSESSMENT IN
PRODUCTIONPRODUCTION

Christian Kaestner

Required Reading: Alec Warner and Štěpán Davidovič. " ." in , O'Reilly
2018

Suggested Reading: Georgi Georgiev. “ .” Blog 2018

Canary Releases The Site Reliability Workbook

Statistical Significance in A/B Testing – a Complete Guide

12 . 1

https://landing.google.com/sre/workbook/chapters/canarying-releases/
https://landing.google.com/sre/books/
http://blog.analytics-toolkit.com/2017/statistical-significance-ab-testing-complete-guide/#noninf


Tweet

12 . 2

https://twitter.com/changelog/status/1137359428632621060


LEARNING GOALSLEARNING GOALS
Design telemetry for evaluation in practice
Plan and execute experiments (chaos, A/B, shadow releases, ...) in
production
Conduct and evaluate multiple concurrent A/B tests in a system
Perform canary releases
Examine experimental results with statistical rigor
Support data scientists with monitoring platforms providing insights from
production data
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IDENTIFY FEEDBACK MECHANISM IN PRODUCTIONIDENTIFY FEEDBACK MECHANISM IN PRODUCTION
Live observation in the running system
Potentially on subpopulation (AB testing)
Need telemetry to evaluate quality -- challenges:

Gather feedback without being intrusive (i.e., labeling outcomes),
harming user experience
Manage amount of data
Isolating feedback for specific AI component + version

12 . 4
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ENGINEERING CHALLENGES FOR TELEMETRYENGINEERING CHALLENGES FOR TELEMETRY
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EXERCISE: DESIGN TELEMETRY IN PRODUCTIONEXERCISE: DESIGN TELEMETRY IN PRODUCTION
Scenario: Injury detection in smart home workout (laptop camera)

Discuss: Quality measure, telemetry, operationalization, false positives/negatives,
cost, privacy, rare events
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A/B TESTING FOR USABILITYA/B TESTING FOR USABILITY
In running system, random sample of X users are shown modified version
Outcomes (e.g., sales, time on site) compared among groups

12 . 11



FEATURE FLAGSFEATURE FLAGS

Boolean options
Good practices: tracked explicitly, documented, keep them localized and
independent
External mapping of flags to customers

who should see what configuration
e.g., 1% of users sees one_click_checkout, but always the same
users; or 50% of beta-users and 90% of developers and 0.1% of all
users

if (features.enabled(userId, "one_click_checkout") { 
     // new one click checkout function 
} else { 
     // old checkout functionality 
}
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DIFFERENT EFFECT SIZE, SAME DEVIATIONSDIFFERENT EFFECT SIZE, SAME DEVIATIONS

12 . 14



SHADOW RELEASES / TRAFFIC TEEINGSHADOW RELEASES / TRAFFIC TEEING
Run both models in parallel
Report outcome of old model
Compare differences between model predictions
If possible, compare against ground truth labels/telemetry

Examples?
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CANARY RELEASESCANARY RELEASES
Release new version to small percentage of population (like A/B testing)
Automatically roll back if quality measures degrade
Automatically and incrementally increase deployment to 100% otherwise
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CHAOS EXPERIMENTSCHAOS EXPERIMENTS
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https://en.wikipedia.org/wiki/Chaos_engineering


INTERACTING WITH ANDINTERACTING WITH AND
SUPPORTING DATASUPPORTING DATA

SCIENTISTSSCIENTISTS



Data
Scientists

Software
Engineers

12 . 18



LET'S LEARN FROM DEVOPSLET'S LEARN FROM DEVOPS

Distinct roles and expertise, but joint responsibilities, joint tooling

12 . 19



PROJECT M1:PROJECT M1:
RECOMMENDATIONRECOMMENDATION

DEPLOYMENTDEPLOYMENT
(recommendation service, web API, team reflection)

12 . 20



DATA QUALITY AND DATADATA QUALITY AND DATA
PROGRAMMINGPROGRAMMING

Christian Kaestner

Required reading:

� Schelter, S., Lange, D., Schmidt, P., Celikel, M., Biessmann, F. and Grafberger, A., 2018. 
. Proceedings of the VLDB Endowment, 11(12), pp.1781-1794.

� Nick Hynes, D. Sculley, Michael Terry. "
." NIPS Workshop on ML Systems (2017)

"Data cleaning and repairing account for about 60% of the
work of data scientists."

Automating large-
scale data quality verification

The Data Linter: Lightweight Automated Sanity Checking for ML
Data Sets

13 . 1

http://www.vldb.org/pvldb/vol11/p1781-schelter.pdf
http://learningsys.org/nips17/assets/papers/paper_19.pdf


LEARNING GOALSLEARNING GOALS
Design and implement automated quality assurance steps that check data
schema conformance and distributions
Devise thresholds for detecting data dri� and schema violations
Describe common data cleaning steps and their purpose and risks
Evaluate the robustness of AI components with regard to noisy or incorrect
data
Understanding the better models vs more data tradeoffs
Programatically collect, manage, and enhance training data
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CASE STUDY: INVENTORY MANAGEMENTCASE STUDY: INVENTORY MANAGEMENT
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WHAT MAKES GOOD QUALITY DATA?WHAT MAKES GOOD QUALITY DATA?
Accuracy

The data was recorded correctly.
Completeness

All relevant data was recorded.
Uniqueness

The entries are recorded once.
Consistency

The data agrees with itself.
Timeliness

The data is kept up to date.
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ACCURACY VS PRECISIONACCURACY VS PRECISION
Accuracy: Reported values (on
average) represent real value
Precision: Repeated
measurements yield the same
result

Accurate, but imprecise: Average
over multiple measurements
Inaccurate, but precise: Systematic
measurement problem, misleading

A
c
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a
c
y

Precision

Yes

ProbabilityProbability
densitydensity

PrecisionPrecision
ValueValue

Reference valueReference value

ProbabilityProbability
densitydensity

AccuracyAccuracy

PrecisionPrecision
ValueValue

Reference valueReference value

No

ProbabilityProbability
densitydensity

PrecisionPrecision ValueValue

Reference valueReference value

PrecisionPrecision

ProbabilityProbability
densitydensity

ValueValue

Reference valueReference value

AccuracyAccuracy

Yes

No

https://commons.wikimedia.org/wiki/File:Accuracy_and_Precision.svg


(CC-BY-4.0 by )Arbeck
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EXPLORATORY DATA ANALYSIS IN DATA SCIENCEEXPLORATORY DATA ANALYSIS IN DATA SCIENCE
Before learning, understand the data
Understand types, ranges, distributions
Important for understanding data and assessing quality
Plot data distributions for features

Visualizations in a notebook
Boxplots, histograms, density plots, scatter plots, ...

Explore outliers
Look for correlations and dependencies

Association rule mining
Principal component analysis

Examples:  andhttps://rpubs.com/ablythe/520912
https://towardsdatascience.com/exploratory-data-analysis-8fc1cb20fd15

13 . 6

https://rpubs.com/ablythe/520912
https://towardsdatascience.com/exploratory-data-analysis-8fc1cb20fd15


Source: Rahm, Erhard, and Hong Hai Do. . IEEE Data Eng. Bull.
23.4 (2000): 3-13.

Data cleaning: Problems and current approaches

13 . 7

http://dc-pubs.dbs.uni-leipzig.de/files/Rahm2000DataCleaningProblemsand.pdf


DIRTY DATA: EXAMPLEDIRTY DATA: EXAMPLE

Problems with the data?

13 . 8



DATA CLEANING OVERVIEWDATA CLEANING OVERVIEW
Data analysis / Error detection

Error types: e.g. schema constraints, referential integrity, duplication
Single-source vs multi-source problems
Detection in input data vs detection in later stages (more context)

Error repair
Repair data vs repair rules, one at a time or holistic
Data transformation or mapping
Automated vs human guided
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SCHEMA IN RELATIONAL DATABASESSCHEMA IN RELATIONAL DATABASES
CREATE TABLE employees ( 
    emp_no      INT             NOT NULL, 
    birth_date  DATE            NOT NULL, 
    name        VARCHAR(30)     NOT NULL, 
    PRIMARY KEY (emp_no)); 
CREATE TABLE departments ( 
    dept_no     CHAR(4)         NOT NULL, 
    dept_name   VARCHAR(40)     NOT NULL, 
    PRIMARY KEY (dept_no), UNIQUE  KEY (dept_name)); 
CREATE TABLE dept_manager ( 
   dept_no      CHAR(4)         NOT NULL, 
   emp_no       INT             NOT NULL, 
   FOREIGN KEY (emp_no)  REFERENCES employees (emp_no), 
   FOREIGN KEY (dept_no) REFERENCES departments (dept_no), 
   PRIMARY KEY (emp_no,dept_no)); 
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EXAMPLE: APACHE AVROEXAMPLE: APACHE AVRO
{   "type": "record", 
    "namespace": "com.example", 
    "name": "Customer", 
    "fields": [{ 
            "name": "first_name", 
            "type": "string", 
            "doc": "First Name of Customer" 
        },         
        { 
            "name": "age", 
            "type": "int", 
            "doc": "Age at the time of registration" 
        } 
    ] 
}
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DETECTINGDETECTING
INCONSISTENCIESINCONSISTENCIES

Image source: Theo Rekatsinas, Ihab Ilyas, and Chris Ré, “ .” Blog,
2017.

HoloClean - Weakly Supervised Data Repairing

https://dawn.cs.stanford.edu/2017/05/12/holoclean/
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ASSOCIATION RULE MININGASSOCIATION RULE MINING
Sale 1: Bread, Milk
Sale 2: Bread, Diaper, Beer, Eggs
Sale 3: Milk, Diaper, Beer, Coke
Sale 4: Bread, Milk, Diaper, Beer
Sale 5: Bread, Milk, Diaper, Coke

Rules

{Diaper, Beer} -> Milk (40% support, 66% confidence)
Milk -> {Diaper, Beer} (40% support, 50% confidence)
{Diaper, Beer} -> Bread (40% support, 66% confidence)

(also useful tool for exploratory data analysis)

Further readings: Standard algorithms and many variations, see Wikipedia

13 . 13

https://en.wikipedia.org/wiki/Association_rule_learning


DATA LINTER AT GOOGLEDATA LINTER AT GOOGLE
Miscoding

Number, date, time as string
Enum as real
Tokenizable string (long strings, all unique)
Zip code as number

Outliers and scaling
Unnormalized feature (varies widely)
Tailed distributions
Uncommon sign

Packaging
Duplicate rows
Empty/missing data

Further readings: Hynes, Nick, D. Sculley, and Michael Terry. 
. NIPS MLSys Workshop. 2017.

The data linter: Lightweight, automated sanity
checking for ML data sets

13 . 14

http://learningsys.org/nips17/assets/papers/paper_19.pdf


DRIFT & MODEL DECAYDRIFT & MODEL DECAY
in all cases, models are less effective over time

Concept dri�
properties to predict change over time (e.g., what is credit card
fraud)
over time: different expected outputs for same inputs
model has not learned the relevant concepts

Data dri�
characteristics of input data changes (e.g., customers with face
masks)
input data differs from training data
over time: predictions less confident, further from training data

Upstream data changes
external changes in data pipeline (e.g., format changes in weather
service)
model interprets input data incorrectly
over time: abrupt changes due to faulty inputs
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WATCH FOR DEGRADATION IN PREDICTIONWATCH FOR DEGRADATION IN PREDICTION
ACCURACYACCURACY

Image source: Joel Thomas and Clemens Mewald. 
. Databricks Blog, 2019
Productionizing Machine Learning: From Deployment to Dri�

Detection

13 . 16

https://databricks.com/blog/2019/09/18/productionizing-machine-learning-from-deployment-to-drift-detection.html


DETECTING DATA DRIFTDETECTING DATA DRIFT
Compare distributions over time (e.g., t-test)
Detect both sudden jumps and gradual changes
Distributions can be manually specified or learned (see invariant detection)
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SNORKELSNORKEL

Generative model learns which labeling functions to trust and when (~ from
correlations). Learns "expertise" of labeling functions.

Generative model used to provide probabilistic training labels. Discriminative
model learned from labeled training data; generalizes beyond label functions.

, ; Ratner, Alexander, et al. "
." The VLDB Journal 29.2 (2020): 709-730.

https://www.snorkel.org/ https://www.snorkel.org/blog/snorkel-programming Snorkel:
rapid training data creation with weak supervision

https://www.snorkel.org/
https://www.snorkel.org/blog/snorkel-programming
https://link.springer.com/article/10.1007/s00778-019-00552-1
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DATA PROGRAMMINGDATA PROGRAMMING
BEYOND LABELINGBEYOND LABELING

TRAINING DATATRAINING DATA
Potentially useful in many other
scenarios
Data cleaning
Data augmentation
Identifying important data subsets
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BUSINESS SYSTEMS WITHBUSINESS SYSTEMS WITH
MACHINE LEARNINGMACHINE LEARNING

Molham Aref

14



MANAGING ANDMANAGING AND
PROCESSING LARGEPROCESSING LARGE

DATASETSDATASETS
Christian Kaestner

Required reading: Martin Kleppmann. . OReilly. 2017. Chapter 1Designing Data-Intensive Applications

15 . 1

https://dataintensive.net/


LEARNING GOALSLEARNING GOALS
Organize different data management solutions and their tradeoffs
Explain the tradeoffs between batch processing and stream processing and
the lambda architecture
Recommend and justify a design and corresponding technologies for a given
system
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CASE STUDYCASE STUDY
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"ZOOM ADDING CAPACITY""ZOOM ADDING CAPACITY"
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KINDS OF DATAKINDS OF DATA
Training data
Input data
Telemetry data
(Models)

all potentially with huge total volumes and high throughput

need strategies for storage and processing
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DOCUMENT DATA MODELSDOCUMENT DATA MODELS
{ 
    "id": 1, 
    "name": "Christian", 
    "email": "kaestner@cs.", 
    "dpt": [ 
        {"name": "ISR", "address": "..."} 
    ], 
    "other": { ... } 
} 

db.getCollection('users').find({"name": "Christian"})
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LOG FILES, UNSTRUCTURED DATALOG FILES, UNSTRUCTURED DATA
2020-06-25T13:44:14,601844,GET /data/m/goyas+ghosts+2006/17.mpg 
2020-06-25T13:44:14,935791,GET /data/m/the+big+circus+1959/68.mp
2020-06-25T13:44:14,557605,GET /data/m/elvis+meets+nixon+1997/17
2020-06-25T13:44:14,140291,GET /data/m/the+house+of+the+spirits+
2020-06-25T13:44:14,425781,GET /data/m/the+theory+of+everything+
2020-06-25T13:44:14,773178,GET /data/m/toy+story+2+1999/59.mpg 
2020-06-25T13:44:14,901758,GET /data/m/ignition+2002/14.mpg 
2020-06-25T13:44:14,911008,GET /data/m/toy+story+3+2010/46.mpg
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PARTITIONINGPARTITIONING
Divide data:

Horizontal partitioning: Different rows in different tables; e.g., movies by
decade, hashing o�en used
Vertical partitioning: Different columns in different tables; e.g., movie title
vs. all actors

Tradeoffs?

Client

Frontend

Client

Frontend

Database West Database East Database Europe
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REPLICATION STRATEGIES: LEADERS ANDREPLICATION STRATEGIES: LEADERS AND
FOLLOWERSFOLLOWERS

Client

Frontend

Primary Database

Client

Frontend

Backup DB 1 Backup DB 2
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BATCH PROCESSINGBATCH PROCESSING
Analyzing TB of data, typically distributed storage
Filtering, sorting, aggregating
Producing reports, models, ...

cat /var/log/nginx/access.log | 
    awk '{print $7}' | 
    sort | 
    uniq -c | 
    sort -r -n | 
    head -n 5
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DISTRIBUTED BATCH PROCESSINGDISTRIBUTED BATCH PROCESSING
Process data locally at storage
Aggregate results as needed
Separate pluming from job logic

MapReduce as common framework

Image Source: Ville Tuulos (CC BY-SA 3.0)
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KEY DESIGN PRINCIPLE: DATA LOCALITYKEY DESIGN PRINCIPLE: DATA LOCALITY

Data o�en large and distributed, code small
Avoid transfering large amounts of data
Perform computation where data is stored (distributed)
Transfer only results as needed

"The map reduce way"

Moving Computation is Cheaper than Moving Data --
Hadoop Documentation

15 . 12
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STREAM PROCESSINGSTREAM PROCESSING
Like shell programs: Read from stream, produce output in other stream. Loose

coupling

stream:issues

stream:projects_with_issues

stream:deleted_issues_confirmedstream:locked_issues

stream:deleted_issuesGHstream:modified_issues

stream:casey_slugs

mongoDb

CheckDeletedIssues

IssueDownloader

DeletedIssuesPrinter

deleted_issues.html

DetectDeletedIssues

mysql

DetectDeletedIssuesGht/TODO

mongoDb

DetectLockedIssues

DetectModifiedComments

MongoWriter

mongoDb

DetectDeletedComments

stream:deleted_commentsGH

mysql mongoDB

CheckDeletedComments

stream:deleted_comments_confirmed

GitHub

GitHub GitHub

mongoDb
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EVENT SOURCINGEVENT SOURCING
Append only databases
Record edit events, never mutate data
Compute current state from all past events, can reconstruct old state
For efficiency, take state snapshots
Similar to traditional database logs

createUser(id=5, name="Christian", dpt="SCS") 
updateUser(id=5, dpt="ISR") 
deleteUser(id=5)
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LAMBDA ARCHITECTURE AND MACHINE LEARNINGLAMBDA ARCHITECTURE AND MACHINE LEARNING

Learn accurate model in batch job
Learn incremental model in stream processor

15 . 15



Molham Aref " "Business Systems with Machine Learning

15 . 16

https://youtu.be/_bvrzYOA8dY?t=1452
https://www.youtube.com/watch?v=_bvrzYOA8dY


DATA WAREHOUSING (OLAP)DATA WAREHOUSING (OLAP)
Large denormalized databases with materialized views for large scale
reporting queries
e.g. sales database, queries for sales trends by region

Read-only except for batch updates: Data from OLTP systems loaded
periodically, e.g. over night
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DISTRIBUTED GRADIENT DESCENTDISTRIBUTED GRADIENT DESCENT
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https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf


PARAMETER SERVER ARCHITECTUREPARAMETER SERVER ARCHITECTURE
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https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf


QUEUING THEORYQUEUING THEORY



15 . 20



PROFILINGPROFILING
Mostly used during development phase in single components
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PERFORMANCE MONITORING OF DISTRIBUTEDPERFORMANCE MONITORING OF DISTRIBUTED
SYSTEMSSYSTEMS

Source: https://blog.appdynamics.com/tag/fiserv/

http://localhost:1948/distprofiler.png
https://blog.appdynamics.com/tag/fiserv/
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INFRASTRUCTURE QUALITY,INFRASTRUCTURE QUALITY,
DEPLOYMENT, ANDDEPLOYMENT, AND

OPERATIONSOPERATIONS
Christian Kaestner

Required reading: Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. 
. Proceedings of IEEE Big Data (2017)

Recommended readings: Larysa Visengeriyeva. , InnoQ 2020

The ML Test Score: A Rubric for
ML Production Readiness and Technical Debt Reduction

Machine Learning Operations - A Reading List

16 . 1

https://research.google.com/pubs/archive/46555.pdf
https://ml-ops.org/content/references.html


LEARNING GOALSLEARNING GOALS
Implement and automate tests for all parts of the ML pipeline
Understand testing opportunities beyond functional correctness
Automate test execution with continuous integration
Deploy a service for models using container infrastructure
Automate common configuration management tasks
Devise a monitoring strategy and suggest suitable components for
implementing it
Diagnose common operations problems
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POSSIBLE MISTAKES IN ML PIPELINESPOSSIBLE MISTAKES IN ML PIPELINES

Danger of "silent" mistakes in many phases
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FROM MANUAL TESTING TO CONTINUOUSFROM MANUAL TESTING TO CONTINUOUS
INTEGRATIONINTEGRATION
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EXAMPLE: MOCKING A DATACLEANER OBJECTEXAMPLE: MOCKING A DATACLEANER OBJECT

Mocking frameworks provide infrastructure for expressing such tests compactly.

DataTable getData(KafkaStream stream, DataCleaner cleaner) { ...
 
@Test void test() { 
    DataCleaner dummyCleaner = new DataCleaner() { 
        int counter = 0; 
        boolean isValid(String row) {  
            counter++; 
            return counter!=3;  
        } 
        ... 
    } 
    DataTable output = getData(testStream, dummyCleaner); 
    assert(output.length==9) 
}
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TESTING FOR ROBUSTNESSTESTING FOR ROBUSTNESS
manipulating the (controlled) environment: injecting errors into backend to test

error handling

DataTable getData(Stream stream, DataCleaner cleaner) { ... } 
 
@Test void test() { 
    Stream testStream = new Stream() { 
        ... 
        public String getNext() { 
            if (++idx == 3) throw new IOException(); 
            return data[++idx]; 
        } 
    } 
    DataTable output = retry(getData(testStream, ...)); 
    assert(output.length==10) 
}

16 . 6
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INTEGRATION AND SYSTEM TESTSINTEGRATION AND SYSTEM TESTS

16 . 8



https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/


Source: https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/
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https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/
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TEST MONITORING IN PRODUCTIONTEST MONITORING IN PRODUCTION
Like fire drills (manual tests may be okay!)
Manual tests in production, repeat regularly
Actually take down service or trigger wrong signal to monitor
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CHAOS TESTINGCHAOS TESTING

http://principlesofchaos.org

16 . 11
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CASE STUDY: SMART PHONE COVID-19 DETECTIONCASE STUDY: SMART PHONE COVID-19 DETECTION

(from midterm; assume cloud or hybrid deployment)

SpiroCallSpiroCall

16 . 12

https://www.youtube.com/watch?v=e62ZL3dCQWM


DATA TESTSDATA TESTS
1. Feature expectations are captured in a schema.
2. All features are beneficial.
3. No feature’s cost is too much.
4. Features adhere to meta-level requirements.
5. The data pipeline has appropriate privacy controls.
6. New features can be added quickly.
7. All input feature code is tested.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. 
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction

16 . 13

https://research.google.com/pubs/archive/46555.pdf


TESTS FOR MODEL DEVELOPMENTTESTS FOR MODEL DEVELOPMENT
1. Model specs are reviewed and submitted.
2. Offline and online metrics correlate.
3. All hyperparameters have been tuned.
4. The impact of model staleness is known.
5. A simpler model is not better.
6. Model quality is sufficient on important data slices.
7. The model is tested for considerations of inclusion.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. 
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction

16 . 14

https://research.google.com/pubs/archive/46555.pdf


ML INFRASTRUCTURE TESTSML INFRASTRUCTURE TESTS
1. Training is reproducible.
2. Model specs are unit tested.
3. The ML pipeline is Integration tested.
4. Model quality is validated before serving.
5. The model is debuggable.
6. Models are canaried before serving.
7. Serving models can be rolled back.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. 
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction

16 . 15

https://research.google.com/pubs/archive/46555.pdf


MONITORING TESTSMONITORING TESTS
1. Dependency changes result in notification.
2. Data invariants hold for inputs.
3. Training and serving are not skewed.
4. Models are not too stale.
5. Models are numerically stable.
6. Computing performance has not regressed.
7. Prediction quality has not regressed.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. 
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction

16 . 16

https://research.google.com/pubs/archive/46555.pdf


FEATURE INTERACTION EXAMPLESFEATURE INTERACTION EXAMPLES
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ML MODELS FOR FEATURE EXTRACTIONML MODELS FOR FEATURE EXTRACTION
self driving car

Lidar Object Detection

Lane Detection

Video

Object Tracking Object Motion Prediction

Planning

Traffic Light & Sign Recognition

Speed

Location Detector

Example: Zong, W., Zhang, C., Wang, Z., Zhu, J., & Chen, Q. (2018). 
. IEEE access, 6, 21956-21970.

Architecture design and implementation of an
autonomous vehicle

16 . 18

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8340798


DEV VS. OPSDEV VS. OPS
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DEVELOPERSDEVELOPERS
Coding
Testing, static analysis, reviews
Continuous integration
Bug tracking
Running local tests and scalability
experiments
...

OPERATIONSOPERATIONS
Allocating hardware resources
Managing OS updates
Monitoring performance
Monitoring crashes
Managing load spikes, …
Tuning database performance
Running distributed at scale
Rolling back releases
...

QA responsibilities in both roles
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HEAVY TOOLING AND AUTOMATIONHEAVY TOOLING AND AUTOMATION

16 . 21

http://localhost:1948/devops_tools.jpg


Source: https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-
beyond

https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-beyond
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DOCKER EXAMPLEDOCKER EXAMPLE

Source: 

FROM ubuntu:latest 
MAINTAINER ... 
RUN apt-get update -y
RUN apt-get install -y python-pip python-dev build-essential
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
ENTRYPOINT ["python"]
CMD ["app.py"]

http://containertutorials.com/docker-compose/flask-simple-app.html

16 . 24

http://containertutorials.com/docker-compose/flask-simple-app.html


ANSIBLE EXAMPLESANSIBLE EXAMPLES
So�ware provisioning, configuration management, and application-
deployment tool
Apply scripts to many servers

[webservers] 
web1.company.org 
web2.company.org 
web3.company.org 
 
[dbservers] 
db1.company.org 
db2.company.org 
 
[replication_servers
...

# This role deploys the mongod processes and 
- name: create data directory for mongodb 
  file: path={{ mongodb_datadir_prefix }}/mon
  delegate_to: '{{ item }}' 
  with_items: groups.replication_servers 
 
- name: create log directory for mongodb 
  file: path=/var/log/mongo state=directory o
 
- name: Create the mongodb startup file 
  template: src=mongod.j2 dest=/etc/init.d/mo
  delegate_to: '{{ item }}' 
  with_items: groups.replication_servers 
 
 
- name: Create the mongodb configuration file
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https://en.wikipedia.org/wiki/Kubernetes#/media/File:Kubernetes.png


CC BY-SA 4.0 Khtan66
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https://en.wikipedia.org/wiki/Kubernetes#/media/File:Kubernetes.png


https://ml-ops.org/
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https://ml-ops.org/


TOOLING LANDSCAPE LF AITOOLING LANDSCAPE LF AI

Linux Foundation AI Initiative

https://landscape.lfai.foundation/
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HOMEWORK 5: OPENHOMEWORK 5: OPEN
SOURCE TOOLSSOURCE TOOLS
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PROJECT M2: MODEL ANDPROJECT M2: MODEL AND
INFRASTRUCTURE QUALITYINFRASTRUCTURE QUALITY

(online and offline evaluation, data quality, pipeline quality, CI)

16 . 30



ETHICS & FAIRNESS IN AI-ETHICS & FAIRNESS IN AI-
ENABLED SYSTEMSENABLED SYSTEMS

Christian Kaestner

(with slides from Eunsuk Kang)

Required reading: � R. Caplan, J. Donovan, L. Hanson, J. Matthews. " ", Data &
Society (2018).

Algorithmic Accountability: A Primer

17 . 1

https://datasociety.net/wp-content/uploads/2019/09/DandS_Algorithmic_Accountability.pdf


LEARNING GOALSLEARNING GOALS
Review the importance of ethical considerations in designing AI-enabled
systems
Recall basic strategies to reason about ethical challenges
Diagnose potential ethical issues in a given system
Understand the types of harm that can be caused by ML
Understand the sources of bias in ML
Analyze a system for harmful feedback loops

17 . 2



In September 2015, Shkreli received
widespread criticism when Turing

obtained the manufacturing license for
the antiparasitic drug Daraprim and

raised its price by a factor of 56 (from USD
13.5 to 750 per pill), leading him to be
referred to by the media as "the most

hated man in America" and "Pharma Bro".
-- 

"I could have raised it higher and made
more profits for our shareholders. Which is

my primary duty." -- Martin Shkreli

Wikipedia

17 . 3

https://en.wikipedia.org/wiki/Martin_Shkreli


WITH A FEW LINES OF CODE...WITH A FEW LINES OF CODE...



17 . 4

https://www.vox.com/the-goods/2018/11/27/18115164/airline-flying-seat-assignment-ryanair


SAFETYSAFETY

Tweet

17 . 5

https://twitter.com/EmilyEAckerman/status/1186363305851576321


ADDICTIONADDICTION



17 . 6

https://marker.medium.com/robinhood-has-gamified-online-trading-into-an-addiction-cc1d7d989b0c


https://techcrunch.com/2014/06/29/ethics-in-a-data-driven-world/
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https://techcrunch.com/2014/06/29/ethics-in-a-data-driven-world/


MENTAL HEALTHMENTAL HEALTH

https://www.healthline.com/health-news/social-media-use-increases-depression-and-loneliness
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https://www.healthline.com/health-news/social-media-use-increases-depression-and-loneliness


SOCIETY: UNEMPLOYMENT ENGINEERING /SOCIETY: UNEMPLOYMENT ENGINEERING /
DESKILLINGDESKILLING

17 . 9



SOCIETY: POLARIZATIONSOCIETY: POLARIZATION

17 . 10

https://www.wsj.com/articles/facebook-knows-it-encourages-division-top-executives-nixed-solutions-11590507499


WEAPONS, SURVEILLANCE, SUPPRESSIONWEAPONS, SURVEILLANCE, SUPPRESSION

https://www.washingtonpost.com/outlook/2019/01/17/how-us-surveillance-technology-is-propping-up-authoritarian-regimes/
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DISCRIMINATIONDISCRIMINATION

Tweet

17 . 12

https://twitter.com/dhh/status/1192540900393705474


LEGALLY PROTECTED CLASSES (US)LEGALLY PROTECTED CLASSES (US)
Race (Civil Rights Act of 1964)
Color (Civil Rights Act of 1964)
Sex (Equal Pay Act of 1963; Civil Rights Act of 1964)
Religion (Civil Rights Act of 1964)
National origin (Civil Rights Act of 1964)
Citizenship (Immigration Reform and Control Act)
Age (Age Discrimination in Employment Act of 1967)
Pregnancy (Pregnancy Discrimination Act)
Familial status (Civil Rights Act of 1968)
Disability status (Rehabilitation Act of 1973; Americans with Disabilities Act
of 1990)
Veteran status (Vietnam Era Veterans' Readjustment Assistance Act of 1974;
Uniformed Services Employment and Reemployment Rights Act)
Genetic information (Genetic Information Nondiscrimination Act)

Barocas, Solon and Moritz Hardt. " ." NIPS Tutorial 1 (2017).Fairness in machine learning

17 . 13

https://mrtz.org/nips17/#/
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HARMS OF ALLOCATIONHARMS OF ALLOCATION
Withhold opportunities or resources
Poor quality of service, degraded user experience for certain groups

Other examples?



, Buolamwini & Gebru, ACM
FAT* (2018).

Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification

17 . 15

http://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf


HARMS OF REPRESENTATIONHARMS OF REPRESENTATION
Reinforce stereotypes, subordination along the lines of identity

Other examples?

Latanya Sweeney. , SSRN (2013).Discrimination in Online Ad Delivery

https://dl.acm.org/doi/pdf/10.1145/2460276.2460278
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CASE STUDY: COLLEGE ADMISSIONCASE STUDY: COLLEGE ADMISSION

Objective: Decide "Is this student likely to succeed"?
Possible harms: Allocation of resources? Quality of service? Stereotyping?
Denigration? Over-/Under-representation?

17 . 17



NOT ALL DISCRIMINATION IS HARMFULNOT ALL DISCRIMINATION IS HARMFUL

Loan lending: Gender discrimination is illegal.
Medical diagnosis: Gender-specific diagnosis may be desirable.
Discrimination is a domain-specific concept!

Other examples?

17 . 18



WHERE DOES THE BIAS COME FROM?WHERE DOES THE BIAS COME FROM?

Caliskan et al., , Science (2017).Semantics derived automatically from language corpora contain human-like biases

17 . 19

http://cs.bath.ac.uk/~jjb/ftp/CaliskanEtAl-authors-full.pdf


HISTORICAL BIASHISTORICAL BIAS
Data reflects past biases, not intended outcomes
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TAINTED EXAMPLESTAINTED EXAMPLES
Samples or labels reflect human bias
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SKEWED SAMPLESKEWED SAMPLE
Crime prediction for policing strategy
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SAMPLE SIZE DISPARITYSAMPLE SIZE DISPARITY
Less training data available for certain subpopulations

Example: "Shirley Card" used for color calibration
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MASSIVE POTENTIALMASSIVE POTENTIAL
DAMAGEDAMAGE

O'Neil, Cathy. 
. Broadway Books, 2016.

Weapons of math destruction: How big data increases inequality
and threatens democracy

17 . 24

https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/6lpsnm/alma991016462699704436


FEEDBACK LOOPSFEEDBACK LOOPS

biased training data

biased outcomes

biased telemetry

"Big Data processes codify the past. They do not invent the
future. Doing that requires moral imagination, and that’s
something only humans can provide. " -- Cathy O'Neil in

Weapons of Math Destruction

17 . 25

https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/6lpsnm/alma991016462699704436


BUILDING FAIRER AI-BUILDING FAIRER AI-
ENABLED SYSTEMSENABLED SYSTEMS

Christian Kaestner

(with slides from Eunsuk Kang)

Required reading: � Holstein, Kenneth, Jennifer Wortman Vaughan, Hal Daumé III, Miro Dudik, and Hanna Wallach.
" " In Proceedings of the 2019

CHI Conference on Human Factors in Computing Systems, pp. 1-16. 2019.

Recommended reading: � Corbett-Davies, Sam, and Sharad Goel. "
." arXiv preprint arXiv:1808.00023 (2018).

Also revisit: � Vogelsang, Andreas, and Markus Borg. "
." In Proc. of the 6th International Workshop on Artificial Intelligence for

Requirements Engineering (AIRE), 2019.

Improving fairness in machine learning systems: What do industry practitioners need?

The measure and mismeasure of fairness: A
critical review of fair machine learning

Requirements Engineering for Machine Learning:
Perspectives from Data Scientists

18 . 1

http://users.umiacs.umd.edu/~hal/docs/daume19fairness.pdf
https://arxiv.org/pdf/1808.00023.pdf
https://arxiv.org/pdf/1908.04674.pdf


LEARNING GOALSLEARNING GOALS
Understand different definitions of fairness
Discuss methods for measuring fairness
Design and execute tests to check for bias/fairness issues
Understand fairness interventions during data acquisition
Apply engineering strategies to build more fair systems
Diagnose potential ethical issues in a given system
Evaluate and apply mitigation strategies

18 . 2



TWO PARTSTWO PARTS
Fairness assessment in the model

Formal definitions of fairness properties

Testing a model's fairness

Constraining a model for fairer results

System-level fairness engineering

Requirements engineering

Fairness and data acquisition

Team and process considerations

18 . 3



FAIRNESS IS STILL AN ACTIVELY STUDIED & DISPUTED CONCEPT!FAIRNESS IS STILL AN ACTIVELY STUDIED & DISPUTED CONCEPT!

Source: Mortiz Hardt, https://fairmlclass.github.io/

18 . 4

https://fairmlclass.github.io/


FAIRNESS THROUGH BLINDNESSFAIRNESS THROUGH BLINDNESS
Anti-classification: Ignore/eliminate sensitive attributes from dataset, e.g., remove

gender and race from a credit card scoring system

Advantages? Problems?

18 . 5



TESTING ANTI-CLASSIFICATIONTESTING ANTI-CLASSIFICATION
Straightforward invariant for classifier  and protected attribute :

(does not account for correlated attributes)

Test with random input data (see prior lecture on ) or
on any test data

Any single inconsistency shows that the protected attribute was used. Can also
report percentage of inconsistencies.

See for example: Galhotra, Sainyam, Yuriy Brun, and Alexandra Meliou. "
." In Proceedings of the 2017 11th Joint Meeting on Foundations of So�ware Engineering, pp. 498-

510. 2017.

f p

∀x. f(x[p ← 0]) = f(x[p ← 1])

Automated Random Testing

Fairness testing: testing so�ware for
discrimination

18 . 6

https://ckaestne.github.io/seai/S2020/slides/04_modelquality/modelquality.html#/10
http://people.cs.umass.edu/brun/pubs/pubs/Galhotra17fse.pdf


CLASSIFICATION PARITYCLASSIFICATION PARITY
Classification error is equal across groups

Barocas, Solon, Moritz Hardt, and Arvind Narayanan. "
." (2019), Chapter 2

Fairness and machine
learning: Limitations and Opportunities

18 . 7

https://fairmlbook.org/classification.html


INDEPENDENCEINDEPENDENCE
(aka statistical parity, demographic parity, disparate impact, group fairness)

 or 

Acceptance rate (i.e., percentage of positive predictions) must be the same
across all groups
Prediction must be independent of the sensitive attribute
Example:

The predicted rate of recidivism is the same across all races
Chance of promotion the same across all genders

P [R = 1|A = 0] = P [R = 1|A = 1] R ⊥ A
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EXERCISE: CANCER DIAGNOSISEXERCISE: CANCER DIAGNOSIS

1000 data samples (500 male & 500 female patients)
What's the overall recall & precision?
Does the model achieve independence

18 . 9



CALIBRATION TO ACHIEVE INDEPENDENCECALIBRATION TO ACHIEVE INDEPENDENCE
Select different thresholds for different groups to achieve prediction parity:

Lowers bar for some groups -- equity, not equality

P [R > |A = 0] = P [R > |A = 1]t0 t1

18 . 10



SEPARATION / EQUALIZED ODDSSEPARATION / EQUALIZED ODDS
Prediction must be independent of the sensitive attribute conditional on the target

variable: 

Same true positive rate across groups:

And same false positive rate across groups:

Example: A person with good credit behavior score should be assigned a good
score with the same probability regardless of gender

R ⊥ A|Y

P [R = 0 ∣ Y = 1,A = 0] = P [R = 0 ∣ Y = 1,A = 1]

P [R = 1 ∣ Y = 0,A = 0] = P [R = 1 ∣ Y = 0,A = 1]

18 . 11
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REVIEW OF CRITERIA SOREVIEW OF CRITERIA SO
FAR:FAR:

Recidivism scenario: Should a person be
detained?

Anti-classification: ?
Independence: ?
Separation: ?
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CAN WE ACHIEVE FAIRNESS DURING THECAN WE ACHIEVE FAIRNESS DURING THE
LEARNING PROCESS?LEARNING PROCESS?

Data acquisition:
Collect additional data if performance is poor on some groups

Pre-processing:
Clean the dataset to reduce correlation between the feature set and
sensitive attributes

Training-time constraint
ML is a constraint optimization problem (minimize errors)
Impose additional parity constraint into ML optimization process
(e.g., as part of the loss function)

Post-processing
Adjust the learned model to be uncorrelated with sensitive attributes
Adjust thresholds

(Still active area of research! Many new techniques published each year)
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TRADE-OFFS: ACCURACY VS FAIRNESSTRADE-OFFS: ACCURACY VS FAIRNESS

Fairness constraints possible models
Fairness constraints o�en lower accuracy for some group

Fairness Constraints: Mechanisms for Fair Classification, Zafar et al., AISTATS (2017).
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PICKING FAIRNESS CRITERIAPICKING FAIRNESS CRITERIA
Requirements engineering problem!
What's the goal of the system? What do various stakeholders want? How to
resolve conflicts?

http://www.datasciencepublicpolicy.org/projects/aequitas/

18 . 16

http://localhost:1948/fairnesstree.png
http://www.datasciencepublicpolicy.org/projects/aequitas/


FAIRNESS MUST BE CONSIDERED THROUGHOUTFAIRNESS MUST BE CONSIDERED THROUGHOUT
THE ML LIFECYCLE!THE ML LIFECYCLE!

Fairness-aware Machine Learning, Bennett et al., WSDM Tutorial (2019).
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PRACTITIONER CHALLENGESPRACTITIONER CHALLENGES
Fairness is a system-level property

consider goals, user interaction design, data collection, monitoring,
model interaction (properties of a single model may not matter
much)

Fairness-aware data collection, fairness testing for training data
Identifying blind spots

Proactive vs reactive
Team bias and (domain-specific) checklists

Fairness auditing processes and tools
Diagnosis and debugging (outlier or systemic problem? causes?)
Guiding interventions (adjust goals? more data? side effects? chasing
mistakes? redesign?)
Assessing human bias of humans in the loop

Holstein, Kenneth, Jennifer Wortman Vaughan, Hal Daumé III, Miro Dudik, and Hanna Wallach. "
" In Proceedings of the 2019 CHI Conference on

Human Factors in Computing Systems, pp. 1-16. 2019.

Improving fairness
in machine learning systems: What do industry practitioners need?

18 . 18

http://users.umiacs.umd.edu/~hal/docs/daume19fairness.pdf


THE ROLE OF REQUIREMENTS ENGINEERINGTHE ROLE OF REQUIREMENTS ENGINEERING
Identify system goals
Identify legal constraints
Identify stakeholders and fairness concerns
Analyze risks with regard to discrimination and fairness
Analyze possible feedback loops (world vs machine)
Negotiate tradeoffs with stakeholders
Set requirements/constraints for data and model
Plan mitigations in the system (beyond the model)
Design incident response plan
Set expectations for offline and online assurance and monitoring

18 . 19



BEST PRACTICES: TASK DEFINITIONBEST PRACTICES: TASK DEFINITION
Clearly define the task & model’s intended effects
Try to identify and document unintended effects & biases
Clearly define any fairness requirements
Involve diverse stakeholders & multiple perspectives
Refine the task definition & be willing to abort

Swati Gupta, Henriette Cramer, Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé III, Miroslav Dudík,
Hanna Wallach, Sravana Reddy, Jean GarciaGathright. 

, FAT* Tutorial, 2019. ( )
Challenges of incorporating algorithmic fairness into

practice slides

18 . 20

https://www.youtube.com/watch?v=UicKZv93SOY
https://bit.ly/2UaOmTG


Bias can be introduced at any stage of the data pipeline

Bennett et al., , WSDM Tutorial (2019).Fairness-aware Machine Learning

18 . 21

https://sites.google.com/view/wsdm19-fairness-tutorial


DATA SHEETSDATA SHEETS

A process for documenting datasets
Based on common practice in the electronics industry, medicine
Purpose, provenance, creation, composition, distribution: Does the dataset
relate to people? Does the dataset identify any subpopulations?

, Gebru et al., (2019).Datasheets for Dataset

18 . 22

https://arxiv.org/abs/1803.09010


MODEL CARDSMODEL CARDS

see also 

Mitchell, Margaret, et al. " ." In Proceedings of the
Conference on fairness, accountability, and transparency, pp. 220-229. 2019.

https://modelcards.withgoogle.com/about

Model cards for model reporting

18 . 23

https://modelcards.withgoogle.com/about
https://www.seas.upenn.edu/~cis399/files/lecture/l22/reading2.pdf


HOMEWORK 6: FAIRNESSHOMEWORK 6: FAIRNESS
(credit scoring + recommendation, model + system)
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INTERPRETABILITY ANDINTERPRETABILITY AND
EXPLAINABILITYEXPLAINABILITY

Christian Kaestner

Required reading: � Data Skeptic Podcast Episode “ ” with Cynthia Rudin (32min) or �
Rudin, Cynthia. "

." Nature Machine Intelligence 1, no. 5 (2019): 206-215.

Recommended supplementary reading: � Christoph Molnar. "
." 2019

Black Boxes are not Required
Stop explaining black box machine learning models for high stakes decisions and use

interpretable models instead

Interpretable Machine Learning: A Guide for Making
Black Box Models Explainable

19 . 1

https://dataskeptic.com/blog/episodes/2020/black-boxes-are-not-required
https://arxiv.org/abs/1811.10154
https://christophm.github.io/interpretable-ml-book/


LEARNING GOALSLEARNING GOALS
Understand the importance of and use cases for interpretability
Explain the tradeoffs between inherently interpretable models and post-hoc
explanations
Measure interpretability of a model
Select and apply techniques to debug/provide explanations for data,
models and model predictions
Eventuate when to use interpretable models rather than ex-post
explanations

19 . 2



DETECTING ANOMALOUS COMMITSDETECTING ANOMALOUS COMMITS

Goyal, Raman, Gabriel Ferreira, Christian Kästner, and James Herbsleb.
" ." Journal of So�ware: Evolution and

Process 30, no. 1 (2018): e1893.
Identifying unusual commits on GitHub

19 . 3

http://localhost:1948/nodejs-unusual-commit.png
https://www.cs.cmu.edu/~ckaestne/pdf/jsep17.pdf


IS THIS RECIDIVISM MODEL FAIR?IS THIS RECIDIVISM MODEL FAIR?

Rudin, Cynthia. "
." Nature Machine Intelligence 1, no. 5 (2019): 206-215.

IF age between 18–20 and sex is male THEN predict arrest 
ELSE  
IF age between 21–23 and 2–3 prior offenses THEN predict arrest 
ELSE  
IF more than three priors THEN predict arrest 
ELSE predict no arrest

Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead

19 . 4

https://arxiv.org/abs/1811.10154


WHAT FACTORS GO INTO PREDICTING STROKEWHAT FACTORS GO INTO PREDICTING STROKE
RISK?RISK?

Rudin, Cynthia, and Berk Ustun. "
." Interfaces 48, no. 5 (2018):

449-466.

Optimized scoring systems: Toward trust in
machine learning for healthcare and criminal justice

19 . 5

https://users.cs.duke.edu/~cynthia/docs/WagnerPrizeCurrent.pdf


IS THERE AN ACTUAL PROBLEM? HOW TO FINDIS THERE AN ACTUAL PROBLEM? HOW TO FIND
OUT?OUT?

Tweet

19 . 6

https://twitter.com/dhh/status/1192540900393705474


WHAT'S HAPPENING HERE?WHAT'S HAPPENING HERE?

19 . 7



LEGAL REQUIREMENTSLEGAL REQUIREMENTS

See also 

The European Union General Data Protection Regulation
extends the automated decision-making rights in the 1995

Data Protection Directive to provide a legally disputed form
of a right to an explanation: "[the data subject should

have] the right ... to obtain an explanation of the decision
reached"

US Equal Credit Opportunity Act requires to notify
applicants of action taken with specific reasons: "The
statement of reasons for adverse action required by

paragraph (a)(2)(i) of this section must be specific and
indicate the principal reason(s) for the adverse action."

https://en.wikipedia.org/wiki/Right_to_explanation
19 . 8

https://en.wikipedia.org/wiki/Right_to_explanation


DEBUGGINGDEBUGGING
Why did the system make a wrong prediction in this case?
What does it actually learn?
What kind of data would make it better?
How reliable/robust is it?
How much does the second model rely on the outputs of the first?
Understanding edge cases

19 . 9



CURIOSITY, LEARNING, DISCOVERY, SCIENCECURIOSITY, LEARNING, DISCOVERY, SCIENCE
What drove our past hiring decisions? Who gets promoted around here?
What factors influence cancer risk? Recidivism?
What influences demand for bike rentals?
Which organizations are successful at raising donations and why?

19 . 10



INTERPRETABILITY DEFINITIONSINTERPRETABILITY DEFINITIONS

(No mathematical definition)

Interpretability is the degree to which a human can
understand the cause of a decision

Interpretability is the degree to which a human can
consistently predict the model’s result.
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GOOD EXPLANATIONS ARE CONTRASTIVEGOOD EXPLANATIONS ARE CONTRASTIVE
Counterfactuals. Why this, rather than a different prediction?

Partial explanations o�en sufficient in practice if contrastive

Your loan application has been declined. If your savings
account had had more than $100 your loan application

would be accepted.

19 . 12



INHERENTLY INTERPRETABLE MODELS: SPARSEINHERENTLY INTERPRETABLE MODELS: SPARSE
LINEAR MODELSLINEAR MODELS

Truthful explanations, easy to understand for humans

Easy to derive contrastive explanation and feature importance

Requires feature selection/regularization to minimize to few important features
(e.g. Lasso); possibly restricting possible parameter values

f(x) = α+ +. . . +β1x1 βnxn

19 . 13



INHERENTLY INTERPRETABLE MODELS: DECISIONINHERENTLY INTERPRETABLE MODELS: DECISION
TREESTREES

Easy to interpret up to a size

Possible to derive counterfactuals and feature importance

Unstable with small changes to training data

IF age between 18–20 and sex is male THEN predict arrest 
ELSE IF age between 21–23 and 2–3 prior offenses THEN predict ar
ELSE IF more than three priors THEN predict arrest 
ELSE predict no arrest

19 . 14



POST-HOC EXPLANATIONSPOST-HOC EXPLANATIONS
OF BLACK-BOX MODELSOF BLACK-BOX MODELS

(large research field, many approaches, much recent research)

Figure: Lundberg, Scott M., and Su-In Lee. . Advances in
Neural Information Processing Systems. 2017.

A unified approach to interpreting model predictions

http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://christophm.github.io/interpretable-ml-book/


Christoph Molnar. " ." 2019Interpretable Machine Learning: A Guide for Making Black Box Models Explainable

19 . 15

https://christophm.github.io/interpretable-ml-book/


GLOBAL SURROGATESGLOBAL SURROGATES
1. Select dataset X (previous training set or new dataset from same

distribution)
2. Collect model predictions for every value ( )
3. Train inherently interpretable model  on (X,Y)
4. Interpret surrogate model 

Can measure how well  fits  with common model quality measures, typically 

Advantages? Disadvantages?

= f( )yi xi
g

g

g f R2

19 . 16



LIME EXAMPLELIME EXAMPLE

Source: Christoph Molnar. " ."
2019

Interpretable Machine Learning: A Guide for Making Black Box Models Explainable

19 . 17

https://christophm.github.io/interpretable-ml-book/


PARTIAL DEPENDENCE PLOT EXAMPLEPARTIAL DEPENDENCE PLOT EXAMPLE
Bike rental in DC

Source: Christoph Molnar. " ." 2019Interpretable Machine Learning

19 . 18

https://christophm.github.io/interpretable-ml-book/


INDIVIDUAL CONDITIONAL EXPECTATION (ICE)INDIVIDUAL CONDITIONAL EXPECTATION (ICE)
Similar to PDP, but not averaged; may provide insights into interactions

Source: Christoph Molnar. " ." 2019Interpretable Machine Learning

19 . 19

https://christophm.github.io/interpretable-ml-book/


FEATURE IMPORTANCE EXAMPLEFEATURE IMPORTANCE EXAMPLE

Source: Christoph Molnar. " ." 2019Interpretable Machine Learning

19 . 20

https://christophm.github.io/interpretable-ml-book/


EXAMPLE: ANCHORSEXAMPLE: ANCHORS

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/16982/15850


Source: Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "
." In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

Anchors: High-precision model-agnostic
explanations

19 . 21

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/16982/15850


EXAMPLE: ANCHORSEXAMPLE: ANCHORS

Source: Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "
." In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

Anchors: High-precision model-agnostic
explanations

19 . 22

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/16982/15850


COUNTERFACTUAL EXPLANATIONSCOUNTERFACTUAL EXPLANATIONS
if X had not occured, Y would not have happened

-> Smallest change to feature values that result in given output

Your loan application has been declined. If your savings
account had had more than $100 your loan application

would be accepted.

19 . 23



MULTIPLEMULTIPLE
COUNTERFACTUALSCOUNTERFACTUALS

O�en long or multiple explanations

Report all or select "best" (e.g. shortest,
most actionable, likely values) (Rashomon effect)

Your loan application has
been declined. If your savings

account ...

Your loan application has
been declined. If your lived in

...

19 . 24



GAMING/ATTACKING THEGAMING/ATTACKING THE
MODEL WITHMODEL WITH

EXPLANATIONS?EXPLANATIONS?
Does providing an explanation allow

customers to 'hack' the system?

Loan applications?
Apple FaceID?
Recidivism?
Auto grading?
Cancer diagnosis?
Spam detection?

19 . 25



GAMING THE MODEL WITH EXPLANATIONS?GAMING THE MODEL WITH EXPLANATIONS?

Teaching Teaching & Understanding Understanding (3/3)Teaching Teaching & Understanding Understanding (3/3)

19 . 26

https://www.youtube.com/watch?v=w6rx-GBBwVg


EXAMPLE: PROTOTYPES AND CRITICISMSEXAMPLE: PROTOTYPES AND CRITICISMS

Source: Christoph Molnar. " ."
2019

Interpretable Machine Learning: A Guide for Making Black Box Models Explainable

19 . 27

https://christophm.github.io/interpretable-ml-book/


EXAMPLE: INFLUENTIAL INSTANCEEXAMPLE: INFLUENTIAL INSTANCE

Source: Christoph Molnar. " ." 2019Interpretable Machine Learning

19 . 28

https://christophm.github.io/interpretable-ml-book/


WHAT DISTINGUISHES AN INFLUENTIAL INSTANCEWHAT DISTINGUISHES AN INFLUENTIAL INSTANCE
FROM A NON-INFLUENTIAL INSTANCE?FROM A NON-INFLUENTIAL INSTANCE?

Compute influence of every data point and create new model to explain influence
in terms of feature values

(cancer prediction example)

Which features have a strong influence but little support in the training data?

Source: Christoph Molnar. " ." 2019Interpretable Machine Learning

19 . 29

https://christophm.github.io/interpretable-ml-book/


Tell the user when a lack of
data might mean they’ll

need to use their own
judgment. Don’t be afraid

to admit when a lack of
data could affect the

quality of the AI
recommendations.

Source: ,
Google

People + AI Guidebook

19 . 30

https://pair.withgoogle.com/research/


CASE STUDY: FACEBOOK'S FEED CURATIONCASE STUDY: FACEBOOK'S FEED CURATION



Eslami, Motahhare, Aimee Rickman, Kristen Vaccaro, Amirhossein Aleyasen, Andy Vuong, Karrie Karahalios, Kevin
Hamilton, and Christian Sandvig. 

. In Proceedings of the 33rd annual ACM conference on human factors in computing
systems, pp. 153-162. ACM, 2015.

I always assumed that I wasn't really that close to [her]: Reasoning about Invisible
Algorithms in News Feeds

19 . 31

http://eslamim2.web.engr.illinois.edu/publications/Eslami_Algorithms_CHI15.pdf


CASE STUDY: HR APPLICATION SCREENINGCASE STUDY: HR APPLICATION SCREENING

Tweet

19 . 32

https://twitter.com/TheWrongNoel/status/1194842728862892033


"STOP EXPLAINING BLACK"STOP EXPLAINING BLACK
BOX MACHINE LEARNINGBOX MACHINE LEARNING

MODELS FOR HIGH STAKESMODELS FOR HIGH STAKES
DECISIONS AND USEDECISIONS AND USE

INTERPRETABLE MODELSINTERPRETABLE MODELS
INSTEAD."INSTEAD."

Cynthia Rudin (32min) or � Rudin, Cynthia. "
." Nature Machine Intelligence 1, no. 5 (2019): 206-215.

Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead

19 . 33

https://arxiv.org/abs/1811.10154
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https://www.forbes.com/sites/cognitiveworld/2020/03/01/this-is-the-year-of-ai-regulations/#1ea2a84d7a81


19 . 35



VERSIONING,VERSIONING,
PROVENANCE, ANDPROVENANCE, AND
REPRODUCABILITYREPRODUCABILITY

Christian Kaestner

Required reading: � Halevy, Alon, Flip Korn, Natalya F. Noy, Christopher Olston, Neoklis Polyzotis, Sudip Roy, and
Steven Euijong Whang. . In Proceedings of the 2016 International ConferenceGoods: Organizing google's datasets

20 . 1

http://research.google.com/pubs/archive/45390.pdf
https://www.buildingintelligentsystems.com/


LEARNING GOALSLEARNING GOALS
Judge the importance of data provenance, reproducibility and explainability
for a given system
Create documentation for data dependencies and provenance in a given
system
Propose versioning strategies for data and models
Design and test systems for reproducibility

20 . 2



Tweet

20 . 3

https://twitter.com/dhh/status/1192945019230945280


Customer Data

Scoring Model

Historic Data Purchase Analysis

Credit Limit Model

Cost and Risk Function Market Conditions

Offer

20 . 4



DATA PROVENANCEDATA PROVENANCE
Track origin of all data

Collected where?
Modified by whom, when, why?
Extracted from what other data or model or algorithm?

ML models o�en based on data drived from many sources through many
steps, including other models

20 . 5



VERSIONING DATASETSVERSIONING DATASETS
Store copies of entire datasets (like Git)
Store deltas between datasets (like Mercurial)
Offsets in append-only database (like Kafka offset)
History of individual database records (e.g. S3 bucket versions)

some databases specifically track provenance (who has changed
what entry when and how)
specialized data science tools eg  for tensor data

Version pipeline to recreate derived datasets ("views", different formats)
e.g. version data before or a�er cleaning?

O�en in cloud storage, distributed
Checksums o�en used to uniquely identify versions
Version also metadata

Hangar

20 . 6

https://github.com/tensorwerk/hangar-py


VERSIONING PIPELINESVERSIONING PIPELINES
data

pipeline

hyperparameters

model
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EXAMPLE: DVCEXAMPLE: DVC

Tracks models and datasets, built on Git
Splits learning into steps, incrementalization
Orchestrates learning in cloud resources

dvc add images 
dvc run -d images -o model.p cnn.py 
dvc remote add myrepo s3://mybucket 
dvc push

https://dvc.org/

20 . 8

https://dvc.org/


EXAMPLE: MODELDBEXAMPLE: MODELDB

Frontend DemoFrontend Demo

https://github.com/mitdbg/modeldb

20 . 9

https://www.youtube.com/watch?v=gxBb4CjJcxQ
https://github.com/mitdbg/modeldb


EXAMPLE: MLFLOWEXAMPLE: MLFLOW
Instrument pipeline with logging statements
Track individual runs, hyperparameters used, evaluation results, and model
files



Matei Zaharia. , 2018Introducing MLflow: an Open Source Machine Learning Platform

20 . 10

https://databricks.com/blog/2018/06/05/introducing-mlflow-an-open-source-machine-learning-platform.html


DEFINITIONSDEFINITIONS
Reproducibility: the ability of an experiment to be repeated with minor
differences from the original experiment, while achieving the same
qualitative result
Replicability: ability to reproduce results exactly, achieving the same
quantitative result; requires determinism

In science, reproducing results under different conditions are valuable to
gain confidence

"conceptual replication": evaluate same hypothesis with different
experimental procedure or population
many different forms distinguished "... replication" (e.g. close, direct,
exact, independent, literal, nonexperiemental, partial, retest,
sequential, statistical, varied, virtual)

Juristo, Natalia, and Omar S. Gómez. " ." In Empirical so�ware
engineering and verification, pp. 60-88. Springer, Berlin, Heidelberg, 2010.

Replication of so�ware engineering experiments

20 . 11

https://www.researchgate.net/profile/Omar_S_Gomez/publication/221051163_Replication_of_Software_Engineering_Experiments/links/5483c83c0cf25dbd59eb1038/Replication-of-Software-Engineering-Experiments.pdf


NONDETERMINISMNONDETERMINISM
Some machine learning algorithms are nondeterministic

Recall: Neural networks initialized with random weights
Recall: Distributed learning

Many notebooks and pipelines contain nondeterminism
Depend on snapshot of online data (e.g., stream)
Depend on current time
Initialize random seed

Different library versions installed on the machine may affect results
(Inference for a given model is usually deterministic)
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PROJECT M3: MONITORINGPROJECT M3: MONITORING
AND CONTINUOUSAND CONTINUOUS

DEPLOYMENTDEPLOYMENT
(containization, monitoring, canary releases, provenance)
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SECURITY, ADVERSARIALSECURITY, ADVERSARIAL
LEARNING, AND PRIVACYLEARNING, AND PRIVACY

Christian Kaestner

with slides from Eunsuk Kang

Required reading: � Hulten, Geoff. "Building Intelligent Systems: A Guide to Machine Learning Engineering." (2018),
Chapter 25 (Adversaries and Abuse) � Agrawal, A., Gans, J., & Goldfarb, A. (2018). 

. Harvard Business Press. Chapter 19 (Managing AI Risk)

Recommended reading: � Goodfellow, I., McDaniel, P., & Papernot, N. (2018). 
. Communications of the ACM, 61(7), 56-66. � Huang, L., Joseph, A. D., Nelson, B.,

Rubinstein, B. I., & Tygar, J. D. (2011, October). . In Proceedings of the 4th ACM
workshop on Security and artificial intelligence (pp. 43-58).

Prediction machines: the simple
economics of artificial intelligence

Making machine learning robust
against adversarial inputs

Adversarial machine learning

21 . 1

https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/6lpsnm/alma991019698987304436
https://par.nsf.gov/servlets/purl/10111674
http://www.blaine-nelson.com/research/pubs/Huang-Joseph-AISec-2011.pdf


LEARNING GOALSLEARNING GOALS
Explain key concerns in security (in general and with regard to ML models)
Analyze a system with regard to attacker goals, attack surface, attacker
capabilities
Describe common attacks against ML models, including poisoning attacks,
evasion attacks, leaking IP and private information
Measure robustness of a prediction and a model
Understand design opportunities to address security threats at the system
level
Identify security requirements with threat modeling
Apply key design principles for secure system design
Discuss the role of AI in securing so�ware systems
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SECURITY AT THE MODELSECURITY AT THE MODEL
LEVELLEVEL

Various attack discussions, e.g.
poisioning attacks
Model robustness
Attack detection
...

SECURITY AT THESECURITY AT THE
SYSTEM LEVELSYSTEM LEVEL

Requirements analysis
System-level threat modeling
Defense strategies beyond the
model
Security risks beyond the model
...
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SECURITY REQUIREMENTSSECURITY REQUIREMENTS

"CIA triad" of information security
Confidentiality: Sensitive data must be accessed by authorized users only
Integrity: Sensitive data must be modifiable by authorized users only
Availability: Critical services must be available when needed by clients

21 . 4
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ATTACKER GOALS AND INCENTIVESATTACKER GOALS AND INCENTIVES
What is the attacker trying to achieve? Undermine one or more security
requirements
Why does the attacker want to do this?

Example goals and incentives in Garmin/college admission scenario?

21 . 6



POISONING ATTACK: AVAILABILITYPOISONING ATTACK: AVAILABILITY

Availability: Inject mislabeled training data to damage model quality
3% poisoning => 11% decrease in accuracy (Steinhardt, 2017)

Attacker must have some access to the training set
models trained on public data set (e.g., ImageNet)
retrained automatically on telemetry
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POISONING ATTACK: INTEGRITYPOISONING ATTACK: INTEGRITY

Insert training data with seemingly correct labels
More targeted than availability attacks

Cause misclassification from one specific class to another

Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks, Shafahi et al. (2018)
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POISONING ATTACK IN WEB SHOP?POISONING ATTACK IN WEB SHOP?
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DEFENSE AGAINST POISONING ATTACKSDEFENSE AGAINST POISONING ATTACKS

Stronger Data Poisoning Attacks Break Data Sanitization Defenses, Koh, Steinhardt, and Liang (2018).
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ATTACKS ON INPUT DATA (EVASION ATTACKS,ATTACKS ON INPUT DATA (EVASION ATTACKS,
ADVERSARIAL EXAMPLES)ADVERSARIAL EXAMPLES)

Add noise to an existing sample & cause misclassification
achieve specific outcome (evasion attack)
circumvent ML-based authentication like FaceID (impersonation
attack)

Attack at inference time



Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face Recognition, Sharif et al. (2016).

21 . 11



TASK DECISION BOUNDARY VS MODEL BOUNDARYTASK DECISION BOUNDARY VS MODEL BOUNDARY

From Goodfellow et al (2018). 
. Communications of the ACM, 61(7), 56-66.

Making machine learning robust against adversarial
inputs

21 . 12

http://localhost:1948/decisionboundary.png
https://par.nsf.gov/servlets/purl/10111674


GENERATING ADVERSARIAL EXAMPLESGENERATING ADVERSARIAL EXAMPLES
see 
Find similar input with different prediction

targeted (specific prediction) vs untargeted (any wrong prediction)
Many similarity measures (e.g., change one feature vs small changes to
many features)

Attacks more affective which access to model internals, but also black-box
attacks (with many queries to the model) feasible

With model internals: follow the model's gradient
Without model internals: learn 
With access to confidence scores: heuristic search (eg. hill climbing)

counterfactual explanations

= x + argmin{|z| : f(x + z) = t}x∗

surrogate model

21 . 13

https://ckaestne.github.io/seai/S2020/slides/16_explainability/explainability.html#/7/1
https://ckaestne.github.io/seai/S2020/slides/16_explainability/explainability.html#/6/2


NO MODEL IS FULLY ROBUSTNO MODEL IS FULLY ROBUST
Every useful model has at least one decision boundary (ideally at the real
task decision boundary)
Predictions near that boundary are not (and should not) be robust
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ASSURING ROBUSTNESSASSURING ROBUSTNESS
Much research, many tools and approaches (especially for DNN)
Formal verification

Constraint solving or abstract interpretation over computations in
neuron activations
Conservative abstraction, may label robust inputs as not robust
Currently not very scalable
Example: � Singh, Gagandeep, Timon Gehr, Markus Püschel, and
Martin Vechev. " ."
Proceedings of the ACM on Programming Languages 3, no. POPL
(2019): 1-30.

Sampling
Sample within distance, compare prediction to majority prediction
Probabilistic guarantees possible (with many queries, e.g., 100k)
Example: � Cohen, Jeremy M., Elan Rosenfeld, and J. Zico Kolter.
" ." In
Proc. International Conference on Machine Learning, p. 1310--1320,
2019.

An abstract domain for certifying neural networks

Certified adversarial robustness via randomized smoothing

21 . 15

https://dl.acm.org/doi/pdf/10.1145/3290354
https://arxiv.org/abs/1902.02918


PRACTICAL USE OF ROBUSTNESSPRACTICAL USE OF ROBUSTNESS
Defense and safety mechanism at inference time

Check robustness of each prediction at runtime
Handle inputs with non-robust predictions differently (e.g. discard,
low confidence)
Significantly raises cost of prediction (e.g. 100k model inferences or
constraint solving at runtime)

Testing and debugging
Identify training data near model's decision boundary (i.e., model
robust around all training data?)
Check robustness on test data
Evaluate distance for adversarial attacks on test data

(most papers on the topic focus on techniques and evaluate on standard benchmarks
like handwitten numbers, but do not discuss practical scenarios)
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https://www.wired.com/2011/02/bing-copies-google/
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https://www.wired.com/2011/02/bing-copies-google/


https://www.wired.com/2010/03/netflix-cancels-contest/
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https://www.wired.com/2010/03/netflix-cancels-contest/


Fredrikson, Matt, Somesh Jha, and Thomas Ristenpart. "
." In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, pp. 1322-1333. 2015.

Model inversion attacks that exploit confidence
information and basic countermeasures

http://www.cs.cmu.edu/~mfredrik/papers/fjr2015ccs.pdf


21 . 19



GENERATIVE ADVERSARIALGENERATIVE ADVERSARIAL
NETWORKSNETWORKS

backprop
Real images Sample

Discriminator

Generator Sample

Disc. loss

Gen. loss
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PROTOTYPICAL INPUTSPROTOTYPICAL INPUTS
WITH GANSWITH GANS
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https://commons.wikimedia.org/wiki/File:Woman_2.jpg


SECURITY AT THE SYSTEMSECURITY AT THE SYSTEM
LEVELLEVEL

security is more than model robustness

defenses go beyond hardening models
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ARCHITECTURE DIAGRAM FOR THREAT MODELINGARCHITECTURE DIAGRAM FOR THREAT MODELING

Dynamic and physical architecture diagram
Describes system components and users and their interactions
Describe thrust boundaries
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STATE OF ML SECURITYSTATE OF ML SECURITY

On-going arms race (mostly among researchers)
Defenses proposed & quickly broken by noble attacks

Assume ML component is likely vulnerable
Design your system to minimize impact of an attack

Remember: There may be easier ways to compromise system
e.g., poor security misconfiguration (default password), lack of
encryption, code vulnerabilities, etc.,
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SECURE DESIGN PRINCIPLESSECURE DESIGN PRINCIPLES
Principle of Least Privilege

A component should be given the minimal privileges needed to fulfill
its functionality
Goal: Minimize the impact of a compromised component

Isolation
Components should be able to interact with each other no more than
necessary
Goal: Reduce the size of trusted computing base (TCB)
TCB: Components responsible for establishing a security
requirement(s)
If any of TCB compromised => security violation
Conversely, a flaw in non-TCB component => security still preserved!
In poor system designs, TCB = entire system
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https://builtin.com/artificial-intelligence/artificial-intelligence-cybersecurity


SAFETYSAFETY
Christian Kaestner

With slides from Eunsuk Kang

Required Reading � Salay, Rick, Rodrigo Queiroz, and Krzysztof Czarnecki. "
." arXiv preprint arXiv:1709.02435 (2017).

An analysis of ISO 26262: Using
machine learning safely in automotive so�ware

22 . 1

https://arxiv.org/pdf/1709.02435


LEARNING GOALSLEARNING GOALS
Understand safety concerns in traditional and AI-enabled systems
Apply hazard analysis to identify risks and requirements and understand
their limitations
Discuss ways to design systems to be safe against potential failures
Suggest safety assurance strategies for a specific project
Describe the typical processes for safety evaluations and their limitations
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SAFETYSAFETY
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SAFETYSAFETY

Tweet

22 . 4

https://twitter.com/EmilyEAckerman/status/1186363305851576321


CASE STUDY: SELF-DRIVING CARCASE STUDY: SELF-DRIVING CAR

22 . 5



CHALLENGE: EDGE/UNKNOWN CASESCHALLENGE: EDGE/UNKNOWN CASES

Gaps in training data; ML will unlikely to cover all unknown cases
Why is this a unique problem for AI? What about humans?
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WHAT IS HAZARD ANALYSIS?WHAT IS HAZARD ANALYSIS?

Hazard: A condition or event that may result in undesirable outcome
e.g., "Ego vehicle is in risk of a collision with another vehicle."

Safety requirement: Intended to eliminate or reduce one or more hazards
"Ego vehicle must always maintain some minimum safe distance to
the leading vehicle."

Hazard analysis: Methods for identifying hazards & potential root causes

22 . 7



ROBUSTNESS IN A SAFETY SETTINGROBUSTNESS IN A SAFETY SETTING
Does the model reliably detect stop signs?
Also in poor lighting? In fog? With a tilted camera?
With stickers taped to the sign?

Image: David Silver. . Blog post, 2017Adversarial Traffic Signs

22 . 8

https://medium.com/self-driving-cars/adversarial-traffic-signs-fd16b7171906


TESTING FOR SAFETYTESTING FOR SAFETY
Curate data sets for critical scenarios (see model quality lecture)
Create test data for difficult settings (e.g. fog)
Simulation feasible? Shadow deployment feasible?
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NEGATIVE SIDE EFFECTSNEGATIVE SIDE EFFECTS
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REWARD HACKINGREWARD HACKING

PlayFun algorithm pauses the game of Tetris indefinitely to
avoid losing

When about to lose a hockey game, the PlayFun algorithm
exploits a bug to make one of the players on the opposing

team disappear from the map, thus forcing a draw.

Self-driving car rewarded for speed learns to spin in circles

Self-driving car figures out that it can avoid getting
penalized for driving too close to other cars by exploiting

certain sensor vulnerabilities so that it can’t “see” how
close it is getting
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ELEMENTS OF SAFE DESIGNELEMENTS OF SAFE DESIGN
Assume: Components will fail at some point
Goal: Minimize the impact of failures on safety
Detection

Monitoring
Control

Graceful degradation (fail-safe)
Redundancy (fail over)

Prevention
Decoupling & isolation
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THE UBER CRASHTHE UBER CRASH

22 . 13
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SAFETY CHALLENGES WIDELY RECOGNIZEDSAFETY CHALLENGES WIDELY RECOGNIZED

Borg, Markus, et al. "
." arXiv preprint arXiv:1812.05389 (2018).

Safely entering the deep: A review of verification and validation for machine learning and a
challenge elicitation in the automotive industry

22 . 15

https://arxiv.org/pdf/1812.05389


SAFETY ASSURANCE WITH ML COMPONENTSSAFETY ASSURANCE WITH ML COMPONENTS
Consider ML components as unreliable, at most probabilistic guarantees
Testing, testing, testing (+ simulation)

Focus on data quality & robustness
Adopt a system-level perspective!
Consider safe system design with unreliable components

Traditional systems and safety engineering
Assurance cases

Understand the problem and the hazards
System level, goals, hazard analysis, world vs machine
Specify end-to-end system behavior if feasible

Recent research on adversarial learning and safety in reinforcement learning

22 . 16



BEYOND TRADITIONAL SAFETY CRITICAL SYSTEMSBEYOND TRADITIONAL SAFETY CRITICAL SYSTEMS
Recall: Legal vs ethical
Safety analysis not only for regulated domains (nuclear power plants,
medical devices, planes, cars, ...)
Many end-user applications have a safety component

Examples?
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ADDICTIONADDICTION
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https://marker.medium.com/robinhood-has-gamified-online-trading-into-an-addiction-cc1d7d989b0c


SOCIETY: POLARIZATIONSOCIETY: POLARIZATION

22 . 19

https://www.wsj.com/articles/facebook-knows-it-encourages-division-top-executives-nixed-solutions-11590507499


ENVIRONMENTAL: ENERGY CONSUMPTIONENVIRONMENTAL: ENERGY CONSUMPTION
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https://www.newscientist.com/article/2205779-creating-an-ai-can-be-five-times-worse-for-the-planet-than-a-car/


FOSTERINGFOSTERING
INTERDISCIPLINARY TEAMSINTERDISCIPLINARY TEAMS

(Process and Team Reflections)

Christian Kaestner

Required reading: Kim, Miryung, Thomas Zimmermann, Robert DeLine, and Andrew Begel. "
." IEEE Transactions on So�ware Engineering 44, no. 11 (2017):

1024-1038.

Data scientists in
so�ware teams: State of the art and challenges

23 . 1

https://andrewbegel.com/papers/data-scientists.pdf


LEARNING GOALSLEARNING GOALS
Plan development activities in an inclusive fashion for participants in
different roles
Describe agile techniques to address common process and communication
issues
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Data
Scientists

Software
Engineers
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DATA SCIENCE ROLES AT MICROSOFTDATA SCIENCE ROLES AT MICROSOFT
Polymath
Data evangelist
Data preparer
Data shaper
Data analyzer
Platform builder
50/20% moonlighter
Insight actors

Kim, Miryung, Thomas Zimmermann, Robert DeLine, and Andrew Begel. "
." IEEE Transactions on So�ware Engineering 44, no. 11 (2017): 1024-1038.

Data scientists in so�ware teams: State
of the art and challenges

23 . 5

https://andrewbegel.com/papers/data-scientists.pdf


OTHER ROLES IN AI SYSTEMS PROJECTS?OTHER ROLES IN AI SYSTEMS PROJECTS?
Domain specialists
Business, management, marketing
Project management
Designers, UI experts
Operations
Lawyers
Social scientists, ethics
...
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HOW TO STRUCTURE TEAMS?HOW TO STRUCTURE TEAMS?
Mobile game; 50ish developers; distributed teams?
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MYTHICAL MAN MONTHMYTHICAL MAN MONTH

1975, describing experience at IBM developing OS/360

Brooks's law: Adding manpower to a late so�ware project
makes it later
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CONFLICTING GOALS?CONFLICTING GOALS?

Data
Scientists

Compliance
Lawyers
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T-SHAPED PEOPLET-SHAPED PEOPLE
Broad-range generalist + Deep expertise

Figure: Jason Yip. . 2018Why T-shaped people?
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https://medium.com/@jchyip/why-t-shaped-people-e8706198e437


MATRIX ORGANIZATIONMATRIX ORGANIZATION
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TEAM ISSUES:TEAM ISSUES:
GROUPTHINKGROUPTHINK
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TEAM ISSUES: SOCIALTEAM ISSUES: SOCIAL
LOAFINGLOAFING
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SUMMARYSUMMARY
(424 slides in 40 min)

Christian Kaestner
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TODAYTODAY
Looking back at the

semester
Discussion of future of

SE4AI
Feedback for future

semesters
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THE FUTURE OF SOFTWARETHE FUTURE OF SOFTWARE
ENGINEERING FOR AI-ENGINEERING FOR AI-
ENABLED SYSTEMS?ENABLED SYSTEMS?
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WHAT ARE NEW SOFTWARE ENGINEERINGWHAT ARE NEW SOFTWARE ENGINEERING
CHALLENGES?CHALLENGES?

Gaps? Research needs? Adaptation of existing methods?
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ARE SOFTWARE ENGINEERS DISAPPEARING?ARE SOFTWARE ENGINEERS DISAPPEARING?

see also Andrej Karpathy. . Blog, 2017

Tweet

So�ware 2.0
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https://twitter.com/karpathy/status/893576281375219712
https://medium.com/@karpathy/software-2-0-a64152b37c35


Andrej Karpathy is the director of AI at Tesla and coined the term Software 2.0

Speaker notes



ARE DATA SCIENTISTS DISAPPEARING?ARE DATA SCIENTISTS DISAPPEARING?

https://www.forbes.com/sites/cognitiveworld/2020/04/07/automl-20-is-the-data-scientist-obsolete/#28f4a5b053c9


Ryohei Fujimaki.  Forbes, 2020AutoML 2.0: Is The Data Scientist Obsolete?
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https://www.forbes.com/sites/cognitiveworld/2020/04/07/automl-20-is-the-data-scientist-obsolete/#28f4a5b053c9
https://www.forbes.com/sites/cognitiveworld/2020/04/07/automl-20-is-the-data-scientist-obsolete/#28f4a5b053c9


ARE DATA SCIENTISTS DISAPPEARING?ARE DATA SCIENTISTS DISAPPEARING?

Frederik Bussler. , Blog 2020

However, AutoML does not spell the end of data scientists,
as it doesn’t “AutoSelect” a business problem to solve, it
doesn’t AutoSelect indicative data, it doesn’t AutoAlign

stakeholders, it doesn’t provide AutoEthics in the face of
potential bias, it doesn’t provide AutoIntegration with the
rest of your product, and it doesn’t provide AutoMarketing

a�er the fact. -- Frederik Bussler

Will AutoML Be the End of Data Scientists?
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https://towardsdatascience.com/will-automl-be-the-end-of-data-scientists-9af3e63990e0
https://towardsdatascience.com/will-automl-be-the-end-of-data-scientists-9af3e63990e0


SE4AI RESEARCH: MORE SE POWER TO DATASE4AI RESEARCH: MORE SE POWER TO DATA
SCIENTISTS?SCIENTISTS?

SE4AI RESEARCH: MORE DS POWER TO SOFTWARESE4AI RESEARCH: MORE DS POWER TO SOFTWARE
ENGINEERS?ENGINEERS?
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ANALOGYANALOGY
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ANALOGYANALOGY

(better tools don't replace the knowledge to use them)
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MY VIEWMY VIEW

This is an education problem, more than a research
problem.

Interdisciplinary teams, mutual awareness and
understanding

So�ware engineers will play an essential role
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DEVOPS AS A ROLE MODELDEVOPS AS A ROLE MODEL

Joint responsibilities, joint processes, joint tools, joint vocabulary

25 . 12



FEEDBACKFEEDBACK
What was useful?
What could be improved?
Ideas for better remote teaching? 
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17-445 So�ware Engineering for AI-Enabled Systems, Christian Kaestner

THANK YOU!THANK YOU!
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