RISK AND PLANNING FOR
MISTAKES Il

Eunsuk Kang

Required reading: Hulten, Geoff. "Building Intelligent Systems: A Guide to Machine Learning Engineering." (2018), Chapters 6-7 (Why creating IE is hard, balancing
IE) and 24 (Dealing with mistakes)

LEARNING GOALS:

e Evaluate the risks of mistakes from Al components using the fault tree
analysis (FTA)
e Design strategies for mitigating the risks of failures due to Al mistakes

RISK ANALYSIS

WHAT IS RISK ANALYSIS?

WHAT IS RISK ANALYSIS?

e What can possibly go wrong in my system, and what are potential impacts
on system requirements?

WHAT IS RISK ANALYSIS?

e What can possibly go wrong in my system, and what are potential impacts
on system requirements?
e Risk = Likelihood * Impact

WHAT IS RISK ANALYSIS?

e What can possibly go wrong in my system, and what are potential impacts
on system requirements?

e Risk = Likelihood * Impact
e A number of methods:
= Failure mode & effects analysis (FMEA)
= Hazard analysis
= Why-because analysis
= Fault tree analysis (FTA) <= Today's focus!

FAULT TREE ANALYSIS (FTA)

FAULT TREE ANALYSIS (FTA)

e Fault tree: A top-down diagram that displays the relationships between a
system failure (i.e., requirement violation) and its potential causes.
= |dentify sequences of events that resultin a failure
= Prioritize the contributors leading to the failure
= |nform decisions about how to (re-)design the system
= |nvestigate an accident & identify the root cause

FAULT TREE ANALYSIS (FTA)

e Fault tree: A top-down diagram that displays the relationships between a
system failure (i.e., requirement violation) and its potential causes.
= |dentify sequences of events that resultin a failure
= Prioritize the contributors leading to the failure
= |nform decisions about how to (re-)design the system
= |nvestigate an accident & identify the root cause
e Often used for safety & reliability, but can also be used for other types of
requirement (e.g., poor performance, security attacks...)

FAULT TREE ANALYSIS & Al

e Alisincreaseingly used in safety-critical domains such as automotive,
aeronautics, industrial control systems, etc.,

FAULT TREE ANALYSIS & Al

e Alisincreaseingly used in safety-critical domains such as automotive,
aeronautics, industrial control systems, etc.,
e Alis just one part of the system

FAULT TREE ANALYSIS & Al

e Alisincreaseingly used in safety-critical domains such as automotive,
aeronautics, industrial control systems, etc.,
e Alis just one part of the system
e Al will EVENTUALLY make mistakes
= Quput wrong predictions/values
= Fail to adapt to changing environment
= Confuse users, etc.,

FAULT TREE ANALYSIS & Al

Al is increaseingly used in safety-critical domains such as automotive,
aeronautics, industrial control systems, etc.,
Al is just one part of the system
Al will EVENTUALLY make mistakes

= Quput wrong predictions/values

= Fail to adapt to changing environment

= Confuse users, etc.,
How do mistakes made by Al contribute to system failures? How do we
ensure their mistakes do not result in a catastrophe?

FAULT TREES:: BASIC BUILDING BLOCKS

E

Event

Basic event

Ayd

AND OR

Figure from Fault Tree Analysis and Reliability Block Diagram (2016), Jaroslav Mencik.

FAULT TREES:: BASIC BUILDING BLOCKS

: a

Event Basic event AND OR

e Event: An occurrence of a fault or an undesirable action
= (Intermediate) Event: Explained in terms of other events
= Basic Event: No further development or breakdown; leafs of the tree

Figure from Fault Tree Analysis and Reliability Block Diagram (2016), Jaroslav Mencik.

FAULT TREES:: BASIC BUILDING BLOCKS

: a

Event Basic event AND OR

e Event: An occurrence of a fault or an undesirable action

= (Intermediate) Event: Explained in terms of other events

= Basic Event: No further development or breakdown; leafs of the tree
e Gate: Logical relationship between an event & its immedicate subevents

= AND: All of the sub-events must take place

= OR: Any one of the sub-events may result in the parent event

Figure from Fault Tree Analysis and Reliability Block Diagram (2016), Jaroslav Mencik.

FAULT TREE EXAMPLE

TOP EVENT
No light in the room

OR

‘ All bulbs burnt | -/Si.'nh:;\- No Voltage at input ‘

| /R
R
_‘ AND'JI _ OR
T |

1 1 = L1
f‘/fLam_:J \\ /L-iln'._:qz\. ,//‘m r\ / F.lse\l
\ bumed)\ bumed) \ network lu_ bumed
NN 7\

Figure from Fault Tree Analysis and Reliability Block Diagram (2016), Jaroslav Mencik.

FAULT TREE EXAMPLE

TOP EVENT
No light in the room

OR

/5-1.';|tc\\ ND"‘-’G”?—QE at input ‘

‘ All bulbs burnt | ho\

[: |
| failed /H
% \ - /
[AND | [OR
| [|

e Every tree begins with a TOP event (typically a violation of a requirement)

Figure from Fault Tree Analysis and Reliability Block Diagram (2016), Jaroslav Mencik.

FAULT TREE EXAMPLE

TOP EVENT
No light in the room
OR
[
‘ Al bulbs burnt | I/S;'l_c?\l | ND"-.’cItag.e at input ‘
| \faéled |
% _/
[AND i /Dh
[| - |
mp \ { Lan \- ,/.‘:,D'-.-' :\‘-, l—.lse\l
LIme burmed | netw J burned
— o N N2

e Every tree begins with a TOP event (typically a violation of a requirement)
e Every branch of the tree must terminate with a basic event

Figure from Fault Tree Analysis and Reliability Block Diagram (2016), Jaroslav Mencik.

ANALYSIS

e What can we do with fault trees?
= Qualitative analysis: Determine potential root causes of a failiure
through minimal cut set analysis
= Quantitative analysis: Compute the probablity of a failure

MINIMAL CUT SET ANALYSIS

TOP EVENT

No light in the room

OR

\

I

‘ All bulbs burnt

7 i)

{ Switch

Mo Voltage at input ‘

'\ faeled/'

| & v
N \

(or)

| |
1 |
i N

P

-

.-F- .l's&“\\I
bumed

e Cutset: A set of basic events whose simultaneous occurrence is sufficient to
guarantee that the TOP event occurs.

e Minimal cut set: A cut set from which a smaller cut set can be obtained by

removing a basic event.

e Q. What are minimal cut sets in the above tree?

FAILURE PROBABILITY ANALYSIS

FAILURE PROBABILITY ANALYSIS

e To compute the probability of the top event:
= Assign probabilities to basic events (based on domain knowledge)
= Apply probability theory to compute prob. of intermediate events
through AND & OR gates
= (Alternatively, as sum of prob. of minimal cut sets)

FAILURE PROBABILITY ANALYSIS

e To compute the probability of the top event:
= Assign probabilities to basic events (based on domain knowledge)
= Apply probability theory to compute prob. of intermediate events
through AND & OR gates
= (Alternatively, as sum of prob. of minimal cut sets)
e In this class, we won't ask you to do this.
= Why is this especially challenging for software?

FTA PROCESS

.10

FTA PROCESS

1. Specify the system structure
e Environment entities & machine components
e Assumptions (ENV) & specifications (SPEC)

FTA PROCESS

1. Specify the system structure
e Environment entities & machine components
e Assumptions (ENV) & specifications (SPEC)

2. Identify the top event as a violation of REQ

FTA PROCESS

1. Specify the system structure
e Environment entities & machine components
e Assumptions (ENV) & specifications (SPEC)
2. Identify the top event as a violation of REQ
3. Construct the fault tree
e |Intermediate events can be derived from violation of SPEC/ENV

FTA PROCESS

1. Specify the system structure
e Environment entities & machine components
e Assumptions (ENV) & specifications (SPEC)
2. Identify the top event as a violation of REQ
3. Construct the fault tree
e |Intermediate events can be derived from violation of SPEC/ENV
4. Analyze the tree
e |dentify all possible minimal cut sets

FTA PROCESS

1. Specify the system structure
e Environment entities & machine components
e Assumptions (ENV) & specifications (SPEC)
2. Identify the top event as a violation of REQ
3. Construct the fault tree
e |Intermediate events can be derived from violation of SPEC/ENV
4. Analyze the tree
e |dentify all possible minimal cut sets
5. Consider design modifications to eliminate certain cut sets

FTA PROCESS

1. Specify the system structure
e Environment entities & machine components
e Assumptions (ENV) & specifications (SPEC)
2. Identify the top event as a violation of REQ
3. Construct the fault tree
e |Intermediate events can be derived from violation of SPEC/ENV
4. Analyze the tree
e |dentify all possible minimal cut sets
5. Consider design modifications to eliminate certain cut sets
6. Repeat

EXAMPLE: FTA FOR LANE ASSIST

e REQ: The vehicle must be prevented from veering off the lane.

e ENV: Sensors are providing accurate information about the lane; driver
responses when given warning; steering wheel is functional

e SPEC: Lane detection accurately identifies lane markings in image; the
controller generates steering commands to keep the vehicle within lane

BREAKOUT: FTA FOR LANE ASSIST

Draw a fault tree for the lane assist system with the top event as “Vehicle fails to
stay within lane”

EXAMPLE: FTA FOR LANE ASSIST

Incomect lane data

Vehicles veering

off the lane

Vehicle fails to
detect lang

Lane detector fails
to produce comact

-

1

Driver fails to steer

Vehicle fails to

steear

AND I

||1

Caontroller fails to

received by vehicle ’ in time generate steering
Y lane markings commands
A ENV A sPEC | | SPEGC
- P A, N
oR OR I OR] [omitted)
| I I'
| —— e, — /"'- T
- ~ . g . \
/ / \ Leng % | Molaneassist || @
! Weather Classification . \ e : | Dwiver
. ! | f ;
Sep sl l-._ interference | error I\ " .clrnc;gcc ,.'I s milng) prediioad \ Response [
. i, A I I, E— T
- —__ - [SPEC —
,-‘/-- - " [ﬂmlﬂem
AMD
- J‘ " i L ——
/.--" ""\ -~ M
£ Primary %y .-/ Backup
camaera | camera
doN 0 faulty S
" faulty VN aulty W

.13

MITIGATION STRATEGIES

ELEMENTS OF FAULT-TOLERANT DESIGN

e Assume: Components will fail at some point
e Goal: Minimize the impact of failures
e Detection
= Monitoring
= Redundancy
* Response
= Graceful degradation (fail-safe)
= Redundancy (fail over)
= Human in the loop
= Undoable actions
e Containment
= Decoupling &isolation

DETECTION: MONITORING

output

Doer

input | corrective :
sl : : . check
action i

‘b{ Checker ‘

e Goal: Detect when a component failure occurs
e Monitor: Periodically checks the output of a component for errors
= Challenge: Need a way to recognize errors
= e.g., corrupt sensor data, slow or missing response
e Doer-Checker pattern
= Doer: Perform primary function; untrusted and potentially faulty
= Checker: If doer output faulty, perform corrective action (e.g., default
safe output, shutdown); trusted and verifiable

DOER-CHECKER EXAMPLE: AUTONOMOUS VEHICLE

Vehicle Controller

|envircnmental

input ML-based Controller
(Doer)

control action
safe control

Safety Controller action
(Checker)

Sensor Environment Actuator

e ML-based controller (doer): Generate commands to maneuver vehicle
= Complex DNN; makes performance-optimal control decisions
e Safe controller (checker): Checks commands from ML controller; overrides it
with a safe default command if maneuver deemed risky
= Simpler, based on verifiable, transparent logic; conservative control

DOER-CHECKER EXAMPLE: AUTONOMOUS VEHICLE

e Yellow region: Slippery road, causes loss of traction

e ML-based controller (doer): Model ignores traction loss; generates unsafe
maneuvering commands (a)

e Safe controller (checker): Overrides with safe steering commands (b)

Runtime-Safety-Guided Policy Repair, Intl. Conference on Runtime Verification (2020)

RESPONSE: GRACEFUL DEGRADATION (FAIL-SAFE)

e Goal: When a component failure occurs, continue to provide safety (possibly
at reduced functionality and performance)

e Relies on a monitor to detect component failures

e Example: Perception in autonomous vehicles
= |f Lidar fails, switch to a lower-quality detector; be more conservative
= But what about other types of ML failures? (e.g., misclassification)

DETECTION & RESPONSE: REDUNDANCY

Hot Standby Voting
Primary ‘ Comp B \
[heartbeat take over y
Standt‘Jy Majority Voter |
y Output

Detection: Compare output from redundant components
Reseponse: When a component fails, continue to provide the same
functionality
Hot Standby: Standby watches & takes over when primary fails
Voting: Select the majority decision
Caution: Do components fail independently?

= Reasonable assumption for hardware/mechanical failures

= Q. What about software?

DETECTION & RESPONSE: REDUNDANCY

Hot Standby Voting
Primary Comp A Comp B Comp C
heartbeat . take over e | ,x:
Standby Majority Voter
; Output

Detection: Compare output from redundant components
Reseponse: When a component fails, continue to provide the same
Hot Standby: Standby watches & takes over when primary fails
Voting: Select the majority decision
Caution: Do components fail independently?

= Reasonable assumption for hardware/mechanical failures

= Software: Difficult to achieve independence even when built by

different teams (e.g., N-version programming)
= Q. ML components?

RESPONSE: HUMAN IN THE LOOP

Less forceful interaction, making suggestions, asking for confirmation

Al and humans are good at predictions in different settings
= Al better at statistics at scale and many factors
= Humans understand context and data generation process and often
better with thin data
Al for prediction, human for judgment?
But be aware of:
= Notification fatigue, complacency, just following predictions; see
Tesla autopilot
= Compliance/liability protection only?
Deciding when and how to interact
Lots of Ul design and HCI problems

Examples?

Speaker notes

Cancer prediction, sentencing + recidivism, Tesla autopilot, military "kill" decisions, powerpoint design suggestions

RESPONSE: UNDOABLE ACTIONS

Design system to reduce consequence of wrong predictions, allowing humans to
override/undo

Examples?

Speaker notes

Smart home devices, credit card applications, Powerpoint design suggestions

EXAMPLE: LANE ASSIST

Q. Possible mitigation strategies?

EXAMPLE: LANE ASSIST

Q. Possible mitigation strategies?

Vehicles veering

off the lane
1 Rea
A
OR
!__ 1 |
Vehicle fails to Vehicle fails to
detect lane steer
- ‘ _/"""‘-..
OR l AND ‘

| il

I I

Is ;] ‘ i
Incarrect lane data Lans detactorital Driver fails to steer GContraller fails to
recaived by wehicle to produce CONAGE in time generate steering
lane markings commands
A, ENV . SPEC L - | SPEC
+ " P gt .
[OR OR l oR] [omitted)
_JL — . '
e e .--J‘--.
| - - - -,)
~ . ™, { \
£ i
/ N e Long Y Mo lane assist [1
Weather '\ [Classification - i iy | Driver
7 [feramn: i !
Saensor failure | interference '.,_ arrr in .cincmcc ,.-I warning preduced _Responso |
. AN A N 1 N\ ENV_
— ~— — | SPEC —
;/_. ~, [omitted)
AMND
- - = I
- N\ o
Primary % Backup %
camera] | camera

\ faulty ..J/J- .,\

z
-, -

faulty /
— —

CONTAINMENT: DECOUPLING & ISOLATION

e Goal: Faults in a low-critical (LC) components should not impact high-critical
(HC) components

POOR DECOUPLING: USS YORKTOWN (1997)

e Invalid data entered into DB; divide-by-zero crashes entire network
e Required rebooting the whole system; ship dead in water for 3 hours
e Lesson: Handle expected component faults; prevent propagation

.14

POOR DECOUPLING: AUTOMOTIVE SECURITY

Cellular retwork 2uetooth APP
Breakout box 1
FM/AMIXM — WiFi TSR
Y~
J L . 2
QB0 n Thox
CAN-bus x - x
e b ko b '1‘ ‘1 e
=LY 1 BC ERS ABS ocu ECM FECl

e Main components connected through a common CAN bus
= Broadcast; no access control (anyone can read/write)
e Can control brake/engine by playing a malicious MP3

Experimental Security Analysis of a Modern Automobile, Koscher et al., (2010)

CONTAINMENT: DECOUPLING & ISOLATION

Goal: Faults in a low-critical (LC) components should not impact high-critical
(HC) components
Apply the principle of least privilege

= LC components should be allowed to access min. necessary functions
Limit interactions across criticality boundaries

= Deploy LC & HC components on different networks

= Add monitors/checks at interfaces
Is Al in my system performing an LC or HC task?

= |f HC, can we "demote" it into LC?

= Alternatively, replace HC Al components with non-Al ones with

stronger guarantees
= Q. Examples?

SUMMARY

e Accept that ML components will make mistakes
e Use risk analysis to identify and mitigate potential problems
e Design strategies for detecting and mitigating the risks from mistakes by Al

