
TRADE-OFFS AMONG AITRADE-OFFS AMONG AI
TECHNIQUESTECHNIQUES

Christian Kaestner

Required reading: Hulten, Geoff. "Building Intelligent Systems: A Guide to Machine Learning Engineering." (2018),
Chapters 17 and 18
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LEARNING GOALSLEARNING GOALS
Organize and prioritize the relevant qualities of concern for a given project
Explain they key ideas behind decision trees and random forests and
analyze consequences for various qualities
Explain the key ideas of deep learning and the reason for high resource
needs during learning and inference and the ability for incremental learning
Plan and execute an evaluation of the qualities of alternative AI components
for a given purpose
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RECALL: ML IS ARECALL: ML IS A
COMPONENT IN A SYSTEMCOMPONENT IN A SYSTEM

IN AN ENVIRONMENTIN AN ENVIRONMENT
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Transcription model, pipeline to
train the model, monitoring
infrastructure
NonML components for data
storage, user interface, payment
processing, ...
User requirements and
assumptions

System quality vs model quality
System requirements vs model
requirements
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IDENTIFY RELEVANTIDENTIFY RELEVANT
QUALITIES OF AIQUALITIES OF AI

COMPONENTS IN AI-COMPONENTS IN AI-
ENABLED SYSTEMSENABLED SYSTEMS

(Requirements Engineering)
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QUALITYQUALITY
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ACCURACY IS NOT EVERYTHINGACCURACY IS NOT EVERYTHING
Beyond prediction accuracy, what qualities may be relevant for an AI component?
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Collect qualities on whiteboard

Speaker notes



DIFFERENT ASPECTS OF QUALITYDIFFERENT ASPECTS OF QUALITY
Transcendent – Experiential. Quality can be recognized but not defined or
measured
Product-based – Level of attributes (More of this, less of that)
User-based – Fitness for purpose, quality in use
Value-based – Level of attributes/fitness for purpose at given cost
Manufacturing – Conformance to specification, process excellence

Quality attributes: How well the product (system) delivers its functionality
Project attributes: Time-to-market, development & HR cost...
Design attributes: Type of method used, development cost, operating cost,
...

Reference: Garvin, David A., . Sloan management review 25 (1984).What Does Product Quality Really Mean
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http://oqrm.org/English/What_does_product_quality_really_means.pdf


QUALITIES OF INTEREST?QUALITIES OF INTEREST?
Scenario: Component transcribing audio files for transcription startup
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Which of the previously discussed qualities are relevant? Which additional qualities may be relevant here? Cost per
transaction?

Speaker notes



QUALITIES OF INTEREST?QUALITIES OF INTEREST?
Scenario: Component detecting line markings in camera picture in car
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Which of the previously discussed qualities are relevant? Which additional qualities may be relevant here? Realtime use

Speaker notes



QUALITIES OF INTEREST?QUALITIES OF INTEREST?
Scenario: Component detecting credit card fraud as a service provider to many

banks



Note: Very high volume of transactions, low cost per transaction, frequent updates
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https://pixabay.com/photos/credit-card-payment-transaction-926862/


EXAMPLES OF QUALITIES TO CONSIDEREXAMPLES OF QUALITIES TO CONSIDER
Accuracy
Correctness guarantees? Probabilistic guarantees (--> symbolic AI)
How many features? Interactions among features?
How much data needed? Data quality important?
Incremental training possible?
Training time, memory need, model size -- depending on training data
volume and feature size
Inference time, energy efficiency, resources needed, scalability
Interpretability/explainability
Robustness, reproducibility, stability
Security, privacy
Fairness
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MEASURING QUALITIESMEASURING QUALITIES
Define a metric -- define units of interest

e.g., requests per second, max memory per inference, average
training time in seconds for 1 million datasets

Operationalize metric -- define measurement protocol
e.g., conduct experiment: train model with fixed dataset, report
median training time across 5 runs, file size, average accuracy with
leave-one-out crossvalidation a�er hyperparameter tuning
e.g., ask 10 humans to independently label evaluation data, report
reduction in error from machine-learned model over human
predictions
describe all relevant factors: inputs/experimental units used,
configuration decisions and tuning, hardware used, protocol for
manual steps

On terminology: metric/measure refer a method or standard format for
measuring something; operationalization is identifying and implementing a

method to measure some factor
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ON TERMINOLOGYON TERMINOLOGY
Data scientists seem to speak of model properties when referring to
accuracy, inference time, fairness, etc

... but they also use this term for whether a learning technique can
learn non-linear relationships or whether the learning algorithm is
monotonic

So�ware engineering wording would usually be quality attributes, non-
functional requirements, ...
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DECISION TREES, RANDOMDECISION TREES, RANDOM
FORESTS, AND DEEPFORESTS, AND DEEP
NEURAL NETWORKSNEURAL NETWORKS
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DECISION TREESDECISION TREES
Outlook Temperature Humidity Windy Play
overcast hot high false yes

overcast hot high false no

overcast hot high false yes

overcast cool normal true yes

overcast mild high true yes

overcast hot normal false yes

rainy mild high false yes

rainy cool normal false yes

rainy cool normal true no

rainy mild normal false yes

rainy mild high true no

sunny hot high false no

sunny hot high true no

sunny mild high false no

sunny cool normal false yes

sunny mild normal true yes

f(Outlook, Temperature, Humidity, Windy) =

Sunny Overcast Rainy

true false high Normal

Outlook

Windy Yes Humidity

No No No Yes
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BUILDING DECISION TREESBUILDING DECISION TREES
Outlook Temperature Humidity Windy Play
overcast hot high false yes

overcast hot high false no

overcast hot high false yes

overcast cool normal true yes

overcast mild high true yes

overcast hot normal false yes

rainy mild high false yes

rainy cool normal false yes

rainy cool normal true no

rainy mild normal false yes

rainy mild high true no

sunny hot high false no

sunny hot high true no

sunny mild high false no

sunny cool normal false yes

sunny mild normal true yes

Identify all possible decisions
Select the decision that best splits the dataset
into distinct outcomes (typically via entropy or
similar measure)
Repeatedly further split subsets, until stopping
criteria reached
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DECISION TREESDECISION TREES

Sunny Overcast Rainy

true false high Normal

Outlook

Windy Yes Humidity

No No No Yes

 
Identify all possible decisions
Select the decision that best splits the
dataset into distinct outcomes (typically
via entropy or similar measure)
Repeatedly further split subsets, until
stopping criteria reached

Qualities of vanilla decision trees?
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Obvious ones: fairly small model size, low inference cost, no obvious incremental training; easy to interpret locally and
even globally if shallow; easy to understand decision boundaries

Speaker notes



RANDOM FORESTSRANDOM FORESTS

Sunny Overcast Rainy

true false high Normal

Outlook

Windy Yes Humidity

No No No Yes

Sunny Overcast Rainy

truefalse

high Normal

Outlook

No Yes Humidity

Windy

No

No Yes

Sunny Overcast Rainy

true false

Outlook

Windy Yes Yes

No Yes

Train multiple trees on subsets of data or subsets of decisions. Return average
prediction of multiple trees.

Qualities?
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Increased training time and model size, less prone to overfitting, more difficult to interpret

Speaker notes



NEURAL NETWORKSNEURAL NETWORKS
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Artificial neural networks are inspired by how biological neural networks work ("groups of chemically connected or
functionally associated neurons" with synapses forming connections)

From "Texture of the Nervous System of Man and the Vertebrates" by Santiago Ramón y Cajal, via

Speaker notes

https://en.wikipedia.org/wiki/Neural_circuit#/media/File:Cajal_actx_inter.jpg

https://en.wikipedia.org/wiki/Neural_circuit#/media/File:Cajal_actx_inter.jpg


ARTIFICIAL NEURAL NETWORKSARTIFICIAL NEURAL NETWORKS
Simulating biological neural networks of neurons (nodes) and synapses

(connections), popularized in 60s and 70s

Basic building blocks: Artificial neurons, with n inputs and one output; output is
activated if at least m inputs are active

(assuming at least two activated inputs needed to activate output)
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THRESHOLD LOGIC UNIT / PERCEPTRONTHRESHOLD LOGIC UNIT / PERCEPTRON
computing weighted sum of inputs + step function

z = w1x1 + w2x2 + . . . + wnxn = xTw

e.g., step: ϕ(z) = if (z<0) 0 else 1
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o1 = ϕ(b1 + w1 , 1x1 + w1 , 2x2) 
o2 = ϕ(b2 + w2 , 1x1 + w2 , 2x2) 
o3 = ϕ(b3 + w3 , 1x1 + w3 , 2x2)

fW ,b(X) = ϕ(W ⋅ X + b)

(W and b are parameters of the model)
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MULTIPLE LAYERSMULTIPLE LAYERS
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Layers are fully connected here, but layers may have different numbers of neurons

Speaker notes



fWh ,bh ,Wo ,bo
(X) = ϕ(Wo ⋅ ϕ(Wh ⋅ X + bh) + bo)

(matrix multiplications interleaved with step function)
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LEARNING MODEL PARAMETERSLEARNING MODEL PARAMETERS
(BACKPROPAGATION)(BACKPROPAGATION)

Intuition:

Initialize all weights with random values
Compute prediction, remembering all intermediate activations
If output is not expected output (measuring error with a loss function),

compute how much each connection contributed to the error on
output layer
repeat computation on each lower layer
tweak weights a little toward the correct output (gradient descent)

Continue training until weights stabilize

Works efficiently only for certain ϕ, typically logistic function: 
ϕ(z) = 1/ (1 + exp( − z)) or ReLU: ϕ(z) = max(0, z).
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DEEP LEARNINGDEEP LEARNING
More layers
Layers with different numbers of neurons
Different kinds of connections

fully connected (feed forward)
not fully connected (eg. convolutional networks)
keeping state (eg. recurrent neural networks)
skipping layers
...

See Chapter 10 in � Géron, Aurélien. ” ”, 2nd
Edition (2019) or any other book on deep learning

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
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https://cmu.primo.exlibrisgroup.com/permalink/01CMU_INST/6lpsnm/alma991019662775504436


Essentially the same with more layers and different kinds of architectures.

Speaker notes



EXAMPLE SCENARIOEXAMPLE SCENARIO
MNIST Fashion dataset of 70k 28x28 grayscale pixel images, 10 output
classes

5 . 14



EXAMPLE SCENARIOEXAMPLE SCENARIO
MNIST Fashion dataset of 70k 28x28 grayscale pixel images, 10 output
classes
28x28 = 784 inputs in input layers (each 0..255)
Example model with 3 layers, 300, 100, and 10 neurons

How many parameters does this model have?

model = keras.models.Sequential([ 
  keras.layers.Flatten(input_shape=[28, 28]), 
  keras.layers.Dense(300, activation="relu"), 
  keras.layers.Dense(100, activation="relu"), 
  keras.layers.Dense(10, activation="softmax") 
])
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EXAMPLE SCENARIOEXAMPLE SCENARIO
MNIST Fashion dataset of 70k 28x28 grayscale pixel images, 10 output
classes
28x28 = 784 inputs in input layers (each 0..255)
Example model with 3 layers, 300, 100, and 10 neurons

Total of 266,610 parameters in this small example! (Assuming float types, that's 1
MB)

model = keras.models.Sequential([ 
  keras.layers.Flatten(input_shape=[28, 28]), 
  # 784*300+300 = 235500 parameter 
  keras.layers.Dense(300, activation="relu"),  
  # 300*100+100 = 30100 parameters 
  keras.layers.Dense(100, activation="relu"), 
  # 100*10+10 = 1010 parameters 
  keras.layers.Dense(10, activation="softmax") 
])
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NETWORK SIZENETWORK SIZE
50 Layer ResNet network -- classifying 224x224 images into 1000 categories

26 million weights, computes 16 million activations during inference,
168 MB to store weights as floats

Google in 2012(!): 1TB-1PB of training data, 1 billion to 1 trillion parameters
OpenAI’s GPT-2 (2019) -- text generation

48 layers, 1.5 billion weights (~12 GB to store weights)
released model reduced to 117 million weights
trained on 7-8 GPUs for 1 month with 40GB of internet text from 8
million web pages

OpenAI’s GPT-3 (2020): 96 layers, 175 billion weights, 700 GB in memory,
$4.6M in approximate compute cost for training
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Speaker notes

https://lambdalabs.com/blog/demystifying-gpt-3/

https://lambdalabs.com/blog/demystifying-gpt-3/


COST & ENERGY CONSUMPTIONCOST & ENERGY CONSUMPTION
Consumption CO2 (lbs)

Air travel, 1 passenger, NY↔SF 1984

Human life, avg, 1 year 11,023

American life, avg, 1 year 36,156

Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU) CO2 (lbs)

NLP pipeline (parsing, SRL) 39

w/ tuning & experimentation 78,468

Transformer (big) 192

w/ neural architecture search 626,155

Strubell, Emma, Ananya Ganesh, and Andrew McCallum. "
." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3645-3650.

2019.

Energy and Policy Considerations for Deep Learning in
NLP
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COST & ENERGY CONSUMPTIONCOST & ENERGY CONSUMPTION
Model Hardware Hours CO2 Cloud cost in USD

Transformer P100x8 84 192 289–981

ELMo P100x3 336 262 433–1472

BERT V100x64 79 1438 3751–13K

NAS P100x8 274,120 626,155 943K–3.2M

GPT-2 TPUv3x32 168 — 13K–43K

GPT-3 — 4.6M

Strubell, Emma, Ananya Ganesh, and Andrew McCallum. "
." In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3645-3650.

2019.

Energy and Policy Considerations for Deep Learning in
NLP
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REUSING AND RETRAINING NETWORKSREUSING AND RETRAINING NETWORKS
Incremental learning process enables continued training, retraining,
incremental updates
A model that captures key abstractions may be good starting point for
adjustments (i.e., rather than starting with randomly initialized parameters)
Reused models may inherit bias from original model
Lineage important. Model cards promoted for documenting rationale, e.g.,
Google Perspective Toxicity Model
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https://github.com/conversationai/perspectiveapi/blob/master/2-api/model-cards/English/toxicity.md


SOME COMMON QUALITIESSOME COMMON QUALITIES
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LEARNING COST? INCREMENTAL LEARNING?LEARNING COST? INCREMENTAL LEARNING?

Sunny Overcast Rainy

true false

Outlook

Windy Yes Yes

No Yes
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INFERENCE LATENCY AND COST?INFERENCE LATENCY AND COST?

Sunny Overcast Rainy

true false

Outlook

Windy Yes Yes

No Yes

Inference time? Energy costs? Hardware needs? Mobile deployments? Realtime
inference? Throughput and scalability?
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INTERPRETABILITY/EXPLAINABILITYINTERPRETABILITY/EXPLAINABILITY
*"Why did the model predict X?"*

Explaining predictions + Validating Models + Debugging

Some models inherently simpler to understand

Some tools may provide post-hoc explanations

Explanations may be more or less truthful

How to measure interpretability?

more in a later lecture

IF age between 18–20 and sex is male THEN predict arrest 
ELSE IF age between 21–23 and 2–3 prior offenses THEN predict ar
ELSE IF more than three priors THEN predict arrest 
ELSE predict no arrest
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ROBUSTNESSROBUSTNESS

Small input modifications may change output

Small training data modifications may change predictions

How to measure robustness?

more in a later lecture

Image source: OpenAI blog
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https://openai.com/blog/adversarial-example-research/


ROBUSTNESS OF DECISION TREES?ROBUSTNESS OF DECISION TREES?

Sunny Overcast Rainy

true false

Outlook

Windy Yes Yes

No Yes
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FAIRNESSFAIRNESS
Does the model perform differently for different populations?

Many different notions of fairness

O�en caused by bias in training data

Enforce invariants in model or apply corrections outside model

Important consideration during requirements solicitation!

more in a later lecture

IF age between 18–20 and sex is male THEN predict arrest 
ELSE IF age between 21–23 and 2–3 prior offenses THEN predict ar
ELSE IF more than three priors THEN predict arrest 
ELSE predict no arrest
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REQUIREMENTS ENGINEERING FOR AI-ENABLEDREQUIREMENTS ENGINEERING FOR AI-ENABLED
SYSTEMSSYSTEMS

Set minimum accuracy expectations ("functional requirement")
Identify runtime needs (how many predictions, latency requirements, cost
budget, mobile vs cloud deployment)
Identify evolution needs (update and retrain frequency, ...)
Identify explainability needs
Identify protected characteristics and possible fairness concerns
Identify security and privacy requirements (ethical and legal), e.g., possible
use of data
Understand data availability and need (quality, quantity, diversity, formats,
provenance)
Involve data scientists and legal experts
Map system goals to AI components

Further reading: Vogelsang, Andreas, and Markus Borg. "
." In Proc. of the 6th International Workshop on Artificial Intelligence for

Requirements Engineering (AIRE), 2019.

Requirements Engineering for Machine Learning:
Perspectives from Data Scientists

https://arxiv.org/pdf/1908.04674.pdf
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REQUIREMENTS ENGINEERING PROCESSREQUIREMENTS ENGINEERING PROCESS
Interview stakeholders (customers, operators, developers, business experts)

Understand the problem, the kind of prediction needed (e.g.
classification)
Understand the scope: target domain, frequency of change, ...

Broadly understand quality needs from different views
Model view: direct expectation on the model(s)
Data view: availability, quantity, and quality of data
System view: understand system goals and role of ML model and
interactions with environment
Infrastructure view: training cost, reproducibility needs, serving
infrastructure needs, monitoring needs, ...
Environment/user view: external expectations on the system by users
and society, e.g. fairness, safety

Collect and document needs, resolve conflicts, discuss and prioritize

Siebert, Julien, Lisa Joeckel, Jens Heidrich, Koji Nakamichi, Kyoko Ohashi, Isao Namba, Rieko Yamamoto, and
Mikio Aoyama. " ." In International

Conference on the Quality of Information and Communications Technology, pp. 17-31. Springer, Cham, 2020.
Towards Guidelines for Assessing Qualities of Machine Learning Systems

https://arxiv.org/pdf/2008.11007
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RECALL: QUALITIES OF INTEREST?RECALL: QUALITIES OF INTEREST?
Consider model view, data view, system view, infrastructure view, environment view
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Which of the previously discussed qualities are relevant? Which additional qualities may be relevant here? Cost per
transaction?

Speaker notes



RECALL: QUALITIES OF INTEREST?RECALL: QUALITIES OF INTEREST?
Consider model view, data view, system view, infrastructure view, environment view
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Which of the previously discussed qualities are relevant? Which additional qualities may be relevant here? Realtime use

Speaker notes



RECALL: QUALITIES OF INTEREST?RECALL: QUALITIES OF INTEREST?
Consider model view, data view, system view, infrastructure view, environment view



Note: Very high volume of transactions, low cost per transaction, frequent updates
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CONSTRAINTS ANDCONSTRAINTS AND
TRADEOFFSTRADEOFFS



C

Pareto

A

B

f2(A) < f2(B)

f1

f2

f1(A) > f1(B)
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CONSTRAINTSCONSTRAINTS
Constraints define the space of attributes for valid design solutions
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TYPES OF CONSTRAINTSTYPES OF CONSTRAINTS
Problem constraints: Minimum required QAs for an acceptable product
Project constraints: Deadline, project budget, available skills
Design constraints: Type of ML task required (regression/classification), kind
of available data, limits on computing resources, max. inference cost

Plausible constraints for Fraud Detection?
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AI SELECTION PROBLEMAI SELECTION PROBLEM
How to decide which AI method to use in project?
Find method that:

1. satisfies the given constraints and
2. is optimal with respect to the set of relevant attributes
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TRADE-OFFS: COST VS ACCURACYTRADE-OFFS: COST VS ACCURACY

"We evaluated some of the new methods offline but the additional accuracy gains
that we measured did not seem to justify the engineering effort needed to bring them

into a production environment.”

Amatriain & Basilico. , Netflix Technology Blog (2012)Netflix Recommendations: Beyond the 5 stars

https://netflixtechblog.com/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
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TRADE-OFFS: ACCURACY VS INTERPRETABILITYTRADE-OFFS: ACCURACY VS INTERPRETABILITY

Bloom & Brink. , Presentation at
O'Reilly Strata Conference (2014).

Overcoming the Barriers to Production-Ready Machine Learning Workflows

https://conferences.oreilly.com/strata/strata2014/public/schedule/detail/32314
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MULTI-OBJECTIVE OPTIMIZATIONMULTI-OBJECTIVE OPTIMIZATION

C

Pareto

A

B

f2(A) < f2(B)

f1

f2

f1(A) > f1(B)

Determine optimal solutions given multiple, possibly conflicting objectives
Dominated solution: A solution that is inferior to others in every way
Pareto frontier: A set of non-dominated solutions

Image CC BY-SA 3.0 by Nojhan
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EXAMPLE: CREDIT SCORINGEXAMPLE: CREDIT SCORING

For problems with a linear relationship between input & output variables:
Linear regression: Superior in terms of accuracy, interpretability, cost
Other methods are dominated (inferior) solutions
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ML METHOD SELECTION AS MULTI-OBJECTIVEML METHOD SELECTION AS MULTI-OBJECTIVE
OPTIMIZATIONOPTIMIZATION

1. Identify a set of constraints
Start with problem & project constraints
From them, derive design constraints on ML components

2. Eliminate ML methods that do not satisfy the constraints
3. Evaluate remaining methods against each attribute

Measure everything that can be measured! (e.g., training cost,
accuracy, inference time...)

4. Eliminate dominated methods to find the Pareto frontier
5. Consider priorities among attributes to select an optimal method

Which attribute(s) do I care the most about? Utility function?
Judgement!
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EXAMPLE: CARDIOVASCULAR RISK PREDICTIONEXAMPLE: CARDIOVASCULAR RISK PREDICTION

Features: Age, gender, blood pressure, cholestoral level, max. heart rate, ...
Constraints: Accuracy must be higher than baseline
Invalid solutions: ??
Priority among attributes: ??
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17-445 Machine Learning in Production, Christian Kaestner

SUMMARYSUMMARY
Quality is multifaceted
Requirements engineering to solicit important qualities and constraints
Many qualities of interest, define metrics and operationalize
Constraints and tradeoff analysis for selecting ML techniques in production
ML settings
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