
INFRASTRUCTURE QUALITY,INFRASTRUCTURE QUALITY,
DEPLOYMENT, ANDDEPLOYMENT, AND

OPERATIONSOPERATIONS
Christian Kaestner

Required reading: Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

Recommended readings: Larysa Visengeriyeva. , InnoQ 2020

The ML Test Score: A Rubric for
ML Production Readiness and Technical Debt Reduction

Machine Learning Operations - A Reading List

1

https://research.google.com/pubs/archive/46555.pdf
https://ml-ops.org/content/references.html

LEARNING GOALSLEARNING GOALS
Implement and automate tests for all parts of the ML pipeline
Understand testing opportunities beyond functional correctness
Automate test execution with continuous integration
Deploy a service for models using container infrastructure
Automate common configuration management tasks
Devise a monitoring strategy and suggest suitable components for
implementing it
Diagnose common operations problems
Understand the typical concerns and concepts of MLOps

2

BEYOND MODEL AND DATABEYOND MODEL AND DATA
QUALITYQUALITY

3 . 1

POSSIBLE MISTAKES IN ML PIPELINESPOSSIBLE MISTAKES IN ML PIPELINES

Danger of "silent" mistakes in many phases

3 . 2

POSSIBLE MISTAKES IN ML PIPELINESPOSSIBLE MISTAKES IN ML PIPELINES
Danger of "silent" mistakes in many phases:

Dropped data a�er format changes
Failure to push updated model into production
Incorrect feature extraction
Use of stale dataset, wrong data source
Data source no longer available (e.g web API)
Telemetry server overloaded
Negative feedback (telemtr.) no longer sent from app
Use of old model learning code, stale hyperparameter
Data format changes between ML pipeline steps

3 . 3

EVERYTHING CAN BE TESTED?EVERYTHING CAN BE TESTED?

3 . 4

Many qualities can be tested beyond just functional correctness (for a specification). Examples: Performance, model
quality, data quality, usability, robustness, ... not all tests are equality easy to automate

Speaker notes

TESTING STRATEGIESTESTING STRATEGIES
Performance
Scalability
Robustness
Safety
Security
Extensibility
Maintainability
Usability

How to test for these? How automatable?

3 . 5

TEST AUTOMATIONTEST AUTOMATION

4 . 1

FROM MANUAL TESTING TO CONTINUOUSFROM MANUAL TESTING TO CONTINUOUS
INTEGRATIONINTEGRATION

4 . 2

UNIT TEST, INTEGRATION TESTS, SYSTEM TESTSUNIT TEST, INTEGRATION TESTS, SYSTEM TESTS

4 . 3

Software is developed in units that are later assembled. Accordingly we can distinguish different levels of testing.

Unit Testing - A unit is the "smallest" piece of software that a developer creates. It is typically the work of one
programmer and is stored in a single file. Different programming languages have different units: In C++ and Java the
unit is the class; in C the unit is the function; in less structured languages like Basic and COBOL the unit may be the
entire program.

Integration Testing - In integration we assemble units together into subsystems and finally into systems. It is possible for
units to function perfectly in isolation but to fail when integrated. For example because they share an area of the
computer memory or because the order of invocation of the different methods is not the one anticipated by the different
programmers or because there is a mismatch in the data types. Etc.

System Testing - A system consists of all of the software (and possibly hardware, user manuals, training materials, etc.)
that make up the product delivered to the customer. System testing focuses on defects that arise at this highest level of
integration. Typically system testing includes many types of testing: functionality, usability, security, internationalization
and localization, reliability and availability, capacity, performance, backup and recovery, portability, and many more.

Acceptance Testing - Acceptance testing is defined as that testing, which when completed successfully, will result in the
customer accepting the software and giving us their money. From the customer's point of view, they would generally like
the most exhaustive acceptance testing possible (equivalent to the level of system testing). From the vendor's point of
view, we would generally like the minimum level of testing possible that would result in money changing hands. Typical
strategic questions that should be addressed before acceptance testing are: Who defines the level of the acceptance
testing? Who creates the test scripts? Who executes the tests? What is the pass/fail criteria for the acceptance test?
When and how do we get paid?

Speaker notes

ANATOMY OF A UNIT TESTANATOMY OF A UNIT TEST
import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencyListTest {
 @Test
 public void testSanityTest(){
 // set up
 Graph g1 = new AdjacencyListGraph(10);
 Vertex s1 = new Vertex("A");
 Vertex s2 = new Vertex("B");
 // check expected results (oracle)
 assertEquals(true, g1.addVertex(s1));
 assertEquals(true, g1.addVertex(s2));
 assertEquals(true, g1.addEdge(s1, s2));
 assertEquals(s2, g1.getNeighbors(s1)[0]);

}

4 . 4

INGREDIENTS TO A TESTINGREDIENTS TO A TEST
Specification

Controlled environment
Test inputs (calls and parameters)
Expected outputs/behavior (oracle)

4 . 5

UNIT TESTING PITFALLSUNIT TESTING PITFALLS
Working code, failing tests
Smoke tests pass
Works on my (some) machine(s)
Tests break frequently

How to avoid?

4 . 6

HOW TO UNIT TEST COMPONENT WITHHOW TO UNIT TEST COMPONENT WITH
DEPENDENCY ON OTHER CODE?DEPENDENCY ON OTHER CODE?

4 . 7

EXAMPLE: TESTING PARTS OF A SYSTEMEXAMPLE: TESTING PARTS OF A SYSTEM

Client Code Backend

Model learn() {
 Stream stream = openKafkaStream(...)
 DataTable output = getData(testStream, new DefaultCleaner())
 return Model.learn(output);
}

4 . 8

EXAMPLE: USING TEST DATAEXAMPLE: USING TEST DATA

Test driver Code Backend

DataTable getData(Stream stream, DataCleaner cleaner) { ... }

@Test void test() {
 Stream stream = openKafkaStream(...)
 DataTable output = getData(testStream, new DefaultCleaner())
 assert(output.length==10)
}

4 . 9

EXAMPLE: USING TEST DATAEXAMPLE: USING TEST DATA

Test driver Code Backend Interface Mock Backend

DataTable getData(Stream stream, DataCleaner cleaner) { ... }

@Test void test() {
 Stream testStream = new Stream() {
 int idx = 0;
 // hardcoded or read from test file
 String[] data = [...]
 public void connect() { }
 public String getNext() {
 return data[++idx];
 }
 }
 DataTable output = getData(testStream, new DefaultCleaner())
 assert(output.length==10)
}

4 . 10

EXAMPLE: MOCKING A DATACLEANER OBJECTEXAMPLE: MOCKING A DATACLEANER OBJECT
DataTable getData(KafkaStream stream, DataCleaner cleaner) { ...

@Test void test() {
 DataCleaner dummyCleaner = new DataCleaner() {
 boolean isValid(String row) { return true; }
 ...
 }
 DataTable output = getData(testStream, dummyCleaner);
 assert(output.length==10)
}

4 . 11

EXAMPLE: MOCKING A DATACLEANER OBJECTEXAMPLE: MOCKING A DATACLEANER OBJECT

Mocking frameworks provide infrastructure for expressing such tests compactly.

DataTable getData(KafkaStream stream, DataCleaner cleaner) { ...

@Test void test() {
 DataCleaner dummyCleaner = new DataCleaner() {
 int counter = 0;
 boolean isValid(String row) {
 counter++;
 return counter!=3;
 }
 ...
 }
 DataTable output = getData(testStream, dummyCleaner);
 assert(output.length==9)
}

4 . 12

Client

Code

Test driver

Backend Interface

Backend

Mock Backend

4 . 13

TEST ERROR HANDLINGTEST ERROR HANDLING
@Test void test() {
 DataTable data = new DataTable();
 try {
 Model m = learn(data);
 Assert.fail();
 } catch (NoDataException e) { /* correctly thrown */ }
}

4 . 14

Code to test that the right exception is thrown

Speaker notes

TESTING FOR ROBUSTNESSTESTING FOR ROBUSTNESS
manipulating the (controlled) environment: injecting errors into backend to test

error handling

DataTable getData(Stream stream, DataCleaner cleaner) { ... }

@Test void test() {
 Stream testStream = new Stream() {
 ...
 public String getNext() {
 if (++idx == 3) throw new IOException();
 return data[++idx];
 }
 }
 DataTable output = retry(getData(testStream, ...));
 assert(output.length==10)
}

4 . 15

TEST LOCAL ERROR HANDLING (MODULARTEST LOCAL ERROR HANDLING (MODULAR
PROTECTION)PROTECTION)

@Test void test() {
 Stream testStream = new Stream() {
 int idx = 0;
 public void connect() {
 if (++idx < 3)
 throw new IOException("cannot establish connecti
 }
 public String getNext() { ... }
 }
 DataLoader loader = new DataLoader(testStream, new DefaultCl
 ModelBuilder model = new ModelBuilder(loader, ...);
 // assume all exceptions are handled correctly internally
 assert(model.accuracy > .91)
}

4 . 16

Test that errors are correctly handled within a module and do not leak

Speaker notes

4 . 17

TESTABLE CODETESTABLE CODE
Think about testing when writing code
Unit testing encourages you to write testable code
Separate parts of the code to make them independently testable
Abstract functionality behind interface, make it replaceable

Test-Driven Development: A design and development method in which you
write tests before you write the code

4 . 18

INTEGRATION AND SYSTEM TESTSINTEGRATION AND SYSTEM TESTS

4 . 19

INTEGRATION AND SYSTEM TESTSINTEGRATION AND SYSTEM TESTS
Test larger units of behavior

O�en based on use cases or user stories -- customer perspective

@Test void gameTest() {
 Poker game = new Poker();
 Player p = new Player();
 Player q = new Player();
 game.shuffle(seed)
 game.add(p);
 game.add(q);
 game.deal();
 p.bet(100);
 q.bet(100);
 p.call();
 q.fold();
 assert(game.winner() == p);
}

4 . 20

BUILD SYSTEMS & CONTINUOUS INTEGRATIONBUILD SYSTEMS & CONTINUOUS INTEGRATION
Automate all build, analysis, test, and deployment steps from a command
line call
Ensure all dependencies and configurations are defined
Ideally reproducible and incremental
Distribute work for large jobs
Track results

Key CI benefit: Tests are regularly executed, part of process

4 . 21

4 . 22

TRACKING BUILD QUALITYTRACKING BUILD QUALITY
Track quality indicators over time, e.g.,

Build time
Test coverage
Static analysis warnings
Performance results
Model quality measures
Number of TODOs in source code

4 . 23

https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/

Source: https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/

4 . 24

https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/
https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/

TEST MONITORINGTEST MONITORING
Inject/simulate faulty behavior
Mock out notification service used by monitoring
Assert notification

class MyNotificationService extends NotificationService {
 public boolean receivedNotification = false;
 public void sendNotification(String msg) { receivedNotificat
}
@Test void test() {
 Server s = getServer();
 MyNotificationService n = new MyNotificationService();
 Monitor m = new Monitor(s, n);
 s.stop();
 s.request();
 s.request();
 wait();
 assert(n.receivedNotification);
}

4 . 25

TEST MONITORING IN PRODUCTIONTEST MONITORING IN PRODUCTION
Like fire drills (manual tests may be okay!)
Manual tests in production, repeat regularly
Actually take down service or trigger wrong signal to monitor

4 . 26

CHAOS TESTINGCHAOS TESTING

http://principlesofchaos.org

4 . 27

http://principlesofchaos.org/

Chaos Engineering is the discipline of experimenting on a distributed system in order to build confidence in the system’s
capability to withstand turbulent conditions in production. Pioneered at Netflix

Speaker notes

CHAOS TESTING ARGUMENTCHAOS TESTING ARGUMENT
Distributed systems are simply too complex to comprehensively predict
-> experiment on our systems to learn how they will behave in the presence
of faults
Base corrective actions on experimental results because they reflect real
risks and actual events

Experimentation != testing -- Observe behavior rather then expect specific
results
Simulate real-world problem in production (e.g., take down server, inject
latency)
Minimize blast radius: Contain experiment scope

4 . 28

NETFLIX'S SIMIAN ARMYNETFLIX'S SIMIAN ARMY
Chaos Monkey: randomly disable production instances

Latency Monkey: induces artificial delays in our RESTful client-server communication layer

Conformity Monkey: finds instances that don’t adhere to best-practices and shuts them down

Doctor Monkey: monitors other external signs of health to detect unhealthy instances

Janitor Monkey: ensures that our cloud environment is running free of clutter and waste

Security Monkey: finds security violations or vulnerabilities, and terminates the offending
instances

10–18 Monkey: detects problems in instances serving customers in multiple geographic regions

Chaos Gorilla is similar to Chaos Monkey, but simulates an outage of an entire Amazon
availability zone.

4 . 29

CHAOS TOOLKITCHAOS TOOLKIT
Infrastructure for chaos experiments
Driver for various infrastructure and failure cases
Domain specific language for experiment definitions

, ,

{
 "version": "1.0.0",
 "title": "What is the impact of an expired certificate on ou
 "description": "If a certificate expires, we should graceful
 "tags": ["tls"],
 "steady-state-hypothesis": {
 "title": "Application responds",
 "probes": [
 {
 "type": "probe",
 "name": "the-astre-service-must-be-running",
 "tolerance": true,
 "provider": {
 "type": "python",
 "module": "os.path",

"func": "exists"

http://principlesofchaos.org https://github.com/chaostoolkit https://github.com/Netflix/SimianArmy

http://principlesofchaos.org/
https://github.com/chaostoolkit
https://github.com/Netflix/SimianArmy

4 . 30

CHAOS EXPERIMENTS FOR ML INFRASTRUCTURE?CHAOS EXPERIMENTS FOR ML INFRASTRUCTURE?

4 . 31

Fault injection in production for testing in production. Requires monitoring and explicit experiments.

Speaker notes

CODE REVIEW AND STATICCODE REVIEW AND STATIC
ANALYSISANALYSIS

5 . 1

CODE REVIEWCODE REVIEW
Manual inspection of code

Looking for problems and possible improvements
Possibly following checklists
Individually or as group

Modern code review: Incremental review at checking
Review individual changes before merging
Pull requests on GitHub
Not very effective at finding bugs, but many other benefits:
knowledge transfer, code imporvement, shared code ownership,
improving testing

5 . 2

5 . 3

STATIC ANALYSIS, CODE LINTINGSTATIC ANALYSIS, CODE LINTING
Automatic detection of problematic patterns based on code structure

if (user.jobTitle = "manager") {
 ...
}

function fn() {
 x = 1;
 return x;
 x = 3;
}

PrintWriter log = null;
if (anyLogging) log = new PrintWriter(...);
if (detailedLogging) log.println("Log started");

5 . 4

PROCESS INTEGRATION: STATIC ANALYSISPROCESS INTEGRATION: STATIC ANALYSIS
WARNINGS DURING CODE REVIEWWARNINGS DURING CODE REVIEW

Sadowski, Caitlin, Edward A�andilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. "Lessons from building
static analysis tools at google." Communications of the ACM 61, no. 4 (2018): 58-66.

5 . 5

Social engineering to force developers to pay attention. Also possible with integration in pull requests on GitHub.

Speaker notes

INFRASTRUCTURE TESTINGINFRASTRUCTURE TESTING

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction

6 . 1

https://research.google.com/pubs/archive/46555.pdf

Source: Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML
Production Readiness and Technical Debt Reduction

6 . 2

https://research.google.com/pubs/archive/46555.pdf

CASE STUDY: SMART PHONE COVID-19 DETECTIONCASE STUDY: SMART PHONE COVID-19 DETECTION

(from midterm; assume cloud or hybrid deployment)

SpiroCallSpiroCall

6 . 3

https://www.youtube.com/watch?v=e62ZL3dCQWM

DATA TESTSDATA TESTS
1. Feature expectations are captured in a schema.
2. All features are beneficial.
3. No feature’s cost is too much.
4. Features adhere to meta-level requirements.
5. The data pipeline has appropriate privacy controls.
6. New features can be added quickly.
7. All input feature code is tested.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction

6 . 4

https://research.google.com/pubs/archive/46555.pdf

TESTS FOR MODEL DEVELOPMENTTESTS FOR MODEL DEVELOPMENT
1. Model specs are reviewed and submitted.
2. Offline and online metrics correlate.
3. All hyperparameters have been tuned.
4. The impact of model staleness is known.
5. A simpler model is not better.
6. Model quality is sufficient on important data slices.
7. The model is tested for considerations of inclusion.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction

6 . 5

https://research.google.com/pubs/archive/46555.pdf

ML INFRASTRUCTURE TESTSML INFRASTRUCTURE TESTS
1. Training is reproducible.
2. Model specs are unit tested.
3. The ML pipeline is Integration tested.
4. Model quality is validated before serving.
5. The model is debuggable.
6. Models are canaried before serving.
7. Serving models can be rolled back.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction

6 . 6

https://research.google.com/pubs/archive/46555.pdf

MONITORING TESTSMONITORING TESTS
1. Dependency changes result in notification.
2. Data invariants hold for inputs.
3. Training and serving are not skewed.
4. Models are not too stale.
5. Models are numerically stable.
6. Computing performance has not regressed.
7. Prediction quality has not regressed.

Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley.
. Proceedings of IEEE Big Data (2017)

The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction

6 . 7

https://research.google.com/pubs/archive/46555.pdf

BREAKOUT GROUPSBREAKOUT GROUPS
Discuss in groups:

Team 1 picks the data tests
Team 2 the model dev. tests
Team 3 the infrastructure tests
Team 4 the monitoring tests

For 15 min, discuss each listed point in the context of the Covid-detection
scenario: what would you do?
Report back to the class

6 . 8

DEV VS. OPSDEV VS. OPS

7 . 1

COMMON RELEASE PROBLEMS?COMMON RELEASE PROBLEMS?

7 . 2

COMMON RELEASE PROBLEMS (EXAMPLES)COMMON RELEASE PROBLEMS (EXAMPLES)
Missing dependencies
Different compiler versions or library versions
Different local utilities (e.g. unix grep vs mac grep)
Database problems
OS differences
Too slow in real settings
Difficult to roll back changes
Source from many different repositories
Obscure hardware? Cloud? Enough memory?

7 . 3

DEVELOPERSDEVELOPERS
Coding
Testing, static analysis, reviews
Continuous integration
Bug tracking
Running local tests and scalability
experiments
...

OPERATIONSOPERATIONS
Allocating hardware resources
Managing OS updates
Monitoring performance
Monitoring crashes
Managing load spikes, …
Tuning database performance
Running distributed at scale
Rolling back releases
...

QA responsibilities in both roles

7 . 4

QUALITY ASSURANCE DOES NOT STOP IN DEVQUALITY ASSURANCE DOES NOT STOP IN DEV
Ensuring product builds correctly (e.g., reproducible builds)
Ensuring scalability under real-world loads
Supporting environment constraints from real systems (hardware, so�ware,
OS)
Efficiency with given infrastructure
Monitoring (server, database, Dr. Watson, etc)
Bottlenecks, crash-prone components, … (possibly thousands of crash
reports per day/minute)

7 . 5

DEVOPSDEVOPS

8 . 1

KEY IDEAS AND PRINCIPLESKEY IDEAS AND PRINCIPLES
Better coordinate between developers and operations (collaborative)
Key goal: Reduce friction bringing changes from development into
production
Considering the entire tool chain into production (holistic)
Documentation and versioning of all dependencies and configurations
("configuration as code")
Heavy automation, e.g., continuous delivery, monitoring
Small iterations, incremental and continuous releases

Buzz word!

8 . 2

8 . 3

COMMON PRACTICESCOMMON PRACTICES
All configurations in version control
Test and deploy in containers
Automated testing, testing, testing, ...
Monitoring, orchestration, and automated actions in practice
Microservice architectures
Release frequently

8 . 4

HEAVY TOOLING AND AUTOMATIONHEAVY TOOLING AND AUTOMATION

8 . 5

http://localhost:1948/devops_tools.jpg

HEAVY TOOLING AND AUTOMATION -- EXAMPLESHEAVY TOOLING AND AUTOMATION -- EXAMPLES
Infrastructure as code — Ansible, Terraform, Puppet, Chef
CI/CD — Jenkins, TeamCity, GitLab, Shippable, Bamboo, Azure DevOps
Test automation — Selenium, Cucumber, Apache JMeter
Containerization — Docker, Rocket, Unik
Orchestration — Kubernetes, Swarm, Mesos
So�ware deployment — Elastic Beanstalk, Octopus, Vamp
Measurement — Datadog, DynaTrace, Kibana, NewRelic, ServiceNow

8 . 6

CONTINUOUS DELIVERYCONTINUOUS DELIVERY

9 . 1

Source: https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-
beyond

https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-beyond

9 . 2

TYPICAL MANUAL STEPS IN DEPLOYMENT?TYPICAL MANUAL STEPS IN DEPLOYMENT?

9 . 3

CONTINUOUS DELIVERYCONTINUOUS DELIVERY
Full automation from commit to
deployable container
Heavy focus on testing,
reproducibility and rapid feedback
Deployment step itself is manual
Makes process transparent to all
developers and operators

CONTINUOUSCONTINUOUS
DEPLOYMENTDEPLOYMENT

Full automation from commit to
deployment
Empower developers, quick to
production
Encourage experimentation and
fast incremental changes
Commonly integrated with
monitoring and canary releases

9 . 4

9 . 5

9 . 6

https://en.wikipedia.org/wiki/Continuous_delivery#/media/File:Continuous_Delivery_process_diagram.svg

FACEBOOK TESTS FOR MOBILE APPSFACEBOOK TESTS FOR MOBILE APPS
Unit tests (white box)
Static analysis (null pointer warnings, memory leaks, ...)
Build tests (compilation succeeds)
Snapshot tests (screenshot comparison, pixel by pixel)
Integration tests (black box, in simulators)
Performance tests (resource usage)
Capacity and conformance tests (custom)

Further readings: Rossi, Chuck, Elisa Shibley, Shi Su, Kent Beck, Tony Savor, and Michael Stumm.
. In Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of So�ware Engineering, pp. 12-23. ACM, 2016.

Continuous
deployment of mobile so�ware at facebook (showcase)

9 . 7

https://research.fb.com/wp-content/uploads/2017/02/fse-rossi.pdf

RELEASE CHALLENGES FOR MOBILE APPSRELEASE CHALLENGES FOR MOBILE APPS
Large downloads
Download time at user discretion
Different versions in production
Pull support for old releases?

Server side releases silent and quick, consistent

-> App as container, most content + layout from server

9 . 8

REAL-WORLD PIPELINESREAL-WORLD PIPELINES
ARE COMPLEXARE COMPLEX

http://localhost:1948/facebookpipeline.png

http://localhost:1948/facebookpipeline.png

http://localhost:1948/facebookpipeline.png

9 . 9

http://localhost:1948/facebookpipeline.png

CONTAINERS ANDCONTAINERS AND
CONFIGURATIONCONFIGURATION

MANAGEMENTMANAGEMENT

10 . 1

CONTAINERSCONTAINERS
Lightweight virtual machine
Contains entire runnable so�ware,
incl. all dependencies and
configurations
Used in development and
production
Sub-second launch time
Explicit control over shared disks
and network connections

10 . 2

DOCKER EXAMPLEDOCKER EXAMPLE

Source:

FROM ubuntu:latest
MAINTAINER ...
RUN apt-get update -y
RUN apt-get install -y python-pip python-dev build-essential
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
ENTRYPOINT ["python"]
CMD ["app.py"]

http://containertutorials.com/docker-compose/flask-simple-app.html

10 . 3

http://containertutorials.com/docker-compose/flask-simple-app.html

COMMON CONFIGURATION MANAGEMENTCOMMON CONFIGURATION MANAGEMENT
QUESTIONSQUESTIONS

What runs where?
How are machines connected?
What (environment) parameters does so�ware X require?
How to update dependency X everywhere?
How to scale service X?

10 . 4

ANSIBLE EXAMPLESANSIBLE EXAMPLES
So�ware provisioning, configuration management, and application-
deployment tool
Apply scripts to many servers

[webservers]
web1.company.org
web2.company.org
web3.company.org

[dbservers]
db1.company.org
db2.company.org

[replication_servers
...

This role deploys the mongod processes and
- name: create data directory for mongodb
 file: path={{ mongodb_datadir_prefix }}/mon
 delegate_to: '{{ item }}'
 with_items: groups.replication_servers

- name: create log directory for mongodb
 file: path=/var/log/mongo state=directory o

- name: Create the mongodb startup file
 template: src=mongod.j2 dest=/etc/init.d/mo
 delegate_to: '{{ item }}'
 with_items: groups.replication_servers

- name: Create the mongodb configuration file

10 . 5

PUPPET EXAMPLEPUPPET EXAMPLE
Declarative specification, can be applied to many machines

$doc_root = "/var/www/example"

exec { 'apt-get update':
 command => '/usr/bin/apt-get update'
}

package { 'apache2':
 ensure => "installed",
 require => Exec['apt-get update']
}

file { $doc_root:
 ensure => "directory",
 owner => "www-data",
 group => "www-data",
mode => 644

10 . 6

source:

Speaker notes

https://www.digitalocean.com/community/tutorials/configuration-management-101-writing-puppet-manifests

https://www.digitalocean.com/community/tutorials/configuration-management-101-writing-puppet-manifests

CONTAINER ORCHESTRATION WITH KUBERNETESCONTAINER ORCHESTRATION WITH KUBERNETES
Manages which container to deploy to which machine
Launches and kills containers depending on load
Manage updates and routing
Automated restart, replacement, replication, scaling
Kubernetis master controls many nodes

10 . 7

https://en.wikipedia.org/wiki/Kubernetes#/media/File:Kubernetes.png

CC BY-SA 4.0 Khtan66

10 . 8

https://en.wikipedia.org/wiki/Kubernetes#/media/File:Kubernetes.png

MONITORINGMONITORING
Monitor server health
Monitor service health
Collect and analyze measures or log files
Dashboards and triggering automated decisions

Many tools, e.g., Grafana as dashboard, Prometheus for metrics, Loki +
ElasticSearch for logs
Push and pull models

10 . 9

HAWKULARHAWKULAR

10 . 10

https://www.hawkular.org/hawkular-apm/

HAWKULARHAWKULAR

10 . 11

https://www.hawkular.org/hawkular-apm/

https://ml-ops.org/

11 . 1

https://ml-ops.org/

ON TERMINOLOGYON TERMINOLOGY
Many vague buzzwords, o�en not clearly defined
MLOps: Collaboration and communication between data scientists and
operators, e.g.,

Automate model deployment
Model training and versioning infrastructure
Model deployment and monitoring

AIOps: Using AI/ML to make operations decision, e.g. in a data center
DataOps: Data analytics, o�en business setting and reporting

Infrastructure to collect data (ETL) and support reporting
Monitor data analytics pipelines
Combines agile, DevOps, Lean Manufacturing ideas

11 . 2

MLOPS OVERVIEWMLOPS OVERVIEW
Integrate ML artifacts into so�ware release process, unify process
Automated data and model validation (continuous deployment)
Data engineering, data programming
Continuous deployment for ML models

From experimenting in notebooks to quick feedback in production
Versioning of models and datasets
Monitoring in production

Further reading: MLOps principles

11 . 3

https://ml-ops.org/content/mlops-principles.html

TOOLING LANDSCAPE LF AITOOLING LANDSCAPE LF AI

Linux Foundation AI Initiative

https://landscape.lfai.foundation/

11 . 4

SUMMARYSUMMARY
Beyond model and data quality: Quality of the infrastructure matters,
danger of silent mistakes
Many SE techniques for test automation, testing robustness, test adequacy,
testing in production useful for infrastructure quality
Lack of modularity: local improvements may not lead to global
improvements
DevOps: Development vs Operations challenges

Automated configuration
Telemetry and monitoring are key
Many, many tools

MLOps: Automation around ML pipelines, incl. training, evaluation,
versioning, and deployment

12 . 1

17-445 Machine Learning in Production, Christian Kaestner

FURTHER READINGSFURTHER READINGS
� Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML
Test Score: A Rubric for ML Production Readiness and Technical Debt
Reduction. Proceedings of IEEE Big Data (2017)
📰 Zinkevich, Martin.

. Google Blog Post, 2017
� Serban, Alex, Koen van der Blom, Holger Hoos, and Joost Visser. "

." In
Proc. ACM/IEEE International Symposium on Empirical So�ware
Engineering and Measurement (2020).
� O'Leary, Katie, and Makoto Uchida. "

." Proc. Third Conference on
Machine Learning and Systems (MLSys) (2020).
📰 Larysa Visengeriyeva. ,
InnoQ 2020

Rules of Machine Learning: Best Practices for ML
Engineering

Adoption
and Effects of So�ware Engineering Best Practices in Machine Learning

Common problems with Creating
Machine Learning Pipelines from Existing Code

Machine Learning Operations - A Reading List

12 . 2

https://developers.google.com/machine-learning/guides/rules-of-ml/
https://arxiv.org/pdf/2007.14130
https://research.google/pubs/pub48984.pdf
https://ml-ops.org/content/references.html

