SAFETY

Eunsuk Kang

Required Reading: Practical Solutions for Machine Learning Safety in Autonomous Vehicles. S. Mohseni et al.,
SafeAl Workshop@AAAI (2020).


http://ceur-ws.org/Vol-2560/paper40.pdf

LEARNING GOALS

Understand safety concerns in traditional and Al-enabled systems

Apply hazard analysis to identify risks and requirements and understand
their limitations

Discuss ways to design systems to be safe against potential failures
Suggest safety assurance strategies for a specific project

Describe the typical processes for safety evaluations and their limitations



SECURITY

(PICKING UP FROM LAST LECTURE)



ML ATTACKER GOAL

e Confidentiality attacks: Exposure of sensitive data
= |nfer a sensitive label for a data point (e.g., hospital record)
* Integrity attacks: Unauthorized modification of data
= |[nduce a model to misclassify data points from one class to another
= e.g., Spam filter: Classify a spam as a non-spam
e Availability attacks: Disruption to critical services
= Reduce the accuracy of a model
= |[nduce a model to misclassify many data points



ML ATTACKS
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e Attacker knowledge: Does the attacker have access to the model?
= Training data? Learning algorithm used? Parameters?

e Attacker actions:
= Training time: Poisoning attacks
= |nference time: Evasion attacks, model inversion attacks

Understanding Machine Learning, Bhogavalli (2019)






MODEL INVERSION: CONFIDENTIALITY

Recovered Image Training Image

e Given a model output (e.g., name of a person), infer the corresponding,
potentially sensitive input (facial image of the person)
e One method: Gradient descent on input space
= Assumes that the model produces a confidence score for prediction
= Start with a random input vector & iterate towards input values with
higher confidence level



Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures, M. Fredrikson et al. in CCS
(2015).



DEFENSE AGAINST MODEL INVERSION ATTACKS
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More noise (smaller £€) = more privacy =

e Limit attacker access to confidence scores
= e.g., reduce the precision of the scores by rounding them off
= But also reduces the utility of legitimate use of these scores!
e Differential privacy in ML
= Limit what attacker can learn about the model (e.g., parameters)
based on an individual training sample
= Achieved by adding noise to input or output (e.g., DP-SGD)
= More noise => higher privacy, but also lower model accuracy!




Biscotti: A Ledger for Private and Secure Peer-to-Peer Machine Learning, M. Shayan et al., arXiv:1811.09904 (2018).
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STATE OF ML SECURITY

1. Analyze classifier 4. Develop countermeasure

L (e.g., add features, retraining)

2. Devise attack . 3. Analyze attack

e On-going arms race (mostly among researchers)
= Defenses proposed & quickly broken by noble attacks
e Assume ML component is likely vulnerable
= Design your system to minimize impact of an attack
e Remember: There may be easier ways to compromise system
= e.g., poor security misconfiguration (default password), lack of
encryption, code vulnerabilities, etc.,

Classifier designer




SECURITY MINDSET

EMERGENCY TELEPHONE

e Assume that all components may be compromised at one point or another

e Don't assume users will behave as expected; assume all inputs to the
system as potentially malicious

e Aim for risk minimization, not perfect security; reduce the chance of
catastrophic failures from attacks



SECURE DESIGN PRINCIPLES FOR ML

e Principle of least privilege
= Who has access to training data, model internal, system input &
output, etc.,?
= Does any user/stakeholder have more access than necessary?
o |If so, limit access by using authentication mechanisms
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SECURE DESIGN PRINCIPLES FOR ML

e Principle of least privilege
= Who has access to training data, model internal, system input &
output, etc.,?
= Does any user/stakeholder have more access than necessary?
o |If so, limit access by using authentication mechanisms
e |solation & compartmentalization
= Can a security attack on one ML component (e.g., misclassification)
adversely affect other parts of the system?
o |f so, compartmentalize or build in mechanisms to limit impact
(see risk mitigation strategies)


https://ckaestne.github.io/seai/F2020/slides/09_risks_ii/risks_ii.html#/3

SECURE DESIGN PRINCIPLES FOR ML

e Principle of least privilege
= Who has access to training data, model internal, system input &
output, etc.,?
= Does any user/stakeholder have more access than necessary?
o |If so, limit access by using authentication mechanisms
e |solation & compartmentalization
= Can a security attack on one ML component (e.g., misclassification)
adversely affect other parts of the system?
o |f so, compartmentalize or build in mechanisms to limit impact
(see risk mitigation strategies)
e Monitoring & detection:
= ook for odd shifts in the dataset and clean the data if needed (for
poisoning attacks)
= Assume all system input as potentially malicious & sanitize (evasion
attacks)


https://ckaestne.github.io/seai/F2020/slides/09_risks_ii/risks_ii.html#/3
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DEFINING SAFETY

e Prevention of a system failure or malfunction that results in:
= Death or serious injury to people
= |Loss or severe damage to equipment/property
= Harm to the environment or society
e Safety is a system concept
= Can't talk about software being "safe"/"unsafe" on its own
= Safety is defined in terms of its effect on the environment
e Safety != Reliability
= Can build safe systems from unreliable components (e.g.
redundancies)

= Reliable components may be unsafe (e.g. stronger gas tank causes
more severe damage in incident)



SAFETY OF AI-ENABLED SYSTEMS

Tweet


https://twitter.com/skoops/status/1065700195776847872

SAFETY OF AI-ENABLED SYSTEMS

Tweet


https://twitter.com/EmilyEAckerman/status/1186363305851576321

SAFETY IS A BROAD CONCEPT

Not just physical harms/injuries to people

Includes harm to mental health

Includes polluting the environment, including noise pollution
Includes harm to society, e.g. poverty, polarization



CASE STUDY: SELF-DRIVING CAR




HOW DID TRADITIONAL VEHICLES BECOME SAFE?

ANY SPEED

The Designed-in Dangers
of The American Automobile
By Ralph Nader

e National Traffic & Motor Safety Act (1966): Mandatory design changes (head
rests, shatter-resistant windshields, safety belts); road improvements
(center lines, reflectors, guardrails)



AUTONOMOUS VEHICLES: WHAT'S DIFFERENT?

Ford Taps the Brakes on the Arrival of Self-Driving Cars

HYPE CYCLE

The hype around driverless cars came
crashing down in 2018

Top Toyota expert throws cold water
on the driverless car hype

e |n traditional vehicles, humans ultimately responsible for safety
= Some safety features (lane keeping, emergency braking) designed to
help & reduce risks
= j.e,, safety = human control + safety mechanisms
e Use of Al in autonomous vehicles: Perception, control, routing, etc.,
= |nductive training: No explicit requirements or design insights
= Can ML achieve safe design solely through lots of data?



DEMONSTRATING SAFETY

The Self-Driving Car Companies Going the Distance
Number of test miles and reportable miles per disengagement in California in 2018
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More miles tested => safer?




CHALLENGE: EDGE/UNKNOWN CASES
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e Gaps intraining data; ML will unlikely be able to cover all unknown cases
e Why is this a unique problem for Al? What about humans?



APPROACH FOR DEMONSTRATING SAFETY

e Safety Engineering: An engineering discipline which assures that engineered
systems provide acceptable levels of safety.
e Typical safety engineering process:
= |dentify relevant hazards & safety requirements
= |dentify potential root causes for hazards
= For each hazard, develop a mitigation strategy
= Provide evidence that mitigations are properly implemented



HAZARD ANALYSIS

(system level!)



WHAT IS HAZARD ANALYSIS?

e Hazard: A condition or event that may result in undesirable outcome
= e.g.,"Ego vehicleis in risk of a collision with another vehicle."
e Safety requirement: Intended to eliminate or reduce one or more hazards
= "Ego vehicle must always maintain some minimum safe distance to
the leading vehicle."
e Hazard analysis: Methods for identifying hazards & potential root causes



RECALL: WORLD VS MACHINE

Input devices

mo-nltored (e.£. sensors) input data
variables

Environment
Contrm 0utput devices OUtpUt FESU|tS
variables (e.g. actuators)

Software is not unsafe on its own; the control signals it generates may be

Root of unsafety usually in wrong requirements & environmental assumptions



RECALL: REQUIREMENT VS SPECIFICATION

e REQ: Ego vehicle must always maintain some minimum safe distance to the
leading vehicle.

e ENV: Engine is working as intended; sensors are providing accurate
information about the leading car (current speed, distance...)

e SPEC: Depending on the sensor readings, the controller must issue an
actuator command to accelerate/decelerate the vehicle as needed.



REVIEW: FAULT TREE ANALYSIS (FTA)
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e Top-down, backward search method for root cause analysis
= Start with a given hazard (top event), derive a set of components
faults (basic events)
= Compute minimum cutsets as potential root causes
= Q. But how do we identify relevant hazards in the first place?



FORWARD VS BACKWARD SEARCH

Initiating Final Initiating Final
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Forward Search Backward Search




FAILURE MODE AND EFFECTS ANALYSIS (FMEA)
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e Aforward search technique to identify potential hazards

e For each function, (1) enumerate possible failure modes (2) possible safety
impact (effects) and (3) mitigation strategies.

e Widely used in aeronautics, automotive, healthcare, food services,
semiconductor processing, and (to some extent) software



FMEA EXAMPLE: AUTONOMOUS VEHICLES
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e Architecture of the Apollo autonomous driving platform



https://github.com/ApolloAuto/apollo/blob/master/docs/specs/Apollo_3.0_Software_Architecture.md

FMEA EXAMPLE: AUTONOMOUS VEHICLES

Failure

Component Failure Effects Detection Mitigation
Mode
Perception  ? ? ? ?
Perception 7 ? ? ?
Lidar Mechanical Inability to . Switch to manual
: . Monitor
Sensor failure detect objects control mode




FMEA EXAMPLE: AUTONOMOUS VEHICLES

Failure
Component Failure Mode Detection Mitigation
P Effects &
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HAZARD AND OPERABILITY STUDY (HAZOP)

Guide Word Meaning
NO OR NOT Complete negation of the design intent
MORE Quantitative increase
LESS Quantitative decrease
AS WELL AS Qualitative modification/increase
PART OF Qualitative modification/decrease
REVERSE Logical opposite of the design intent

OTHER THAN / INSTEAD Complete substitution

EARLY Relative to the clock time
LATE Relative to the clock time
BEFORE Relating to order or sequence
AFTER Helating to order or sequence

e Aforward search method to identify potential hazards

e For each component, use a set of guide words to generate possible
deviations from expected behavior

e Consider the impact of each generated deviation: Can it result in a system-
level hazard?



HAZOP EXAMPLE: EMERGENCY BRAKING (EB)

Guide Word
NO OR NOT
MORE
LESS
AS WELLAS
PART OF
REVERSE
OTHER THAN / INSTEAD
EARLY
LATE
BEFORE
AFTER

Meaning
Complete negation of the design intent
Quantitative increase
Quantitative decrease
Qualitative modification/increase
Qualitative modification/decrease
Logical opposite of the design intent
Complete substitution
Relative to the clock time
Relative to the clock time
Relating to order or sequence

Relating to order or sequence

e Specification: EB must apply a maximum braking command to the engine.
NO OR NOT: EB does not generate any braking command.

LESS: EB applies less than max. braking.

LATE: EB applies max. braking but after a delay of 2 seconds.
REVERSE: EB generates an acceleration command instead of braking.
BEFORE: EB applies max. braking before a possible crash is detected.

.12



HAZOP EXERCISE: AUTONOMOUS VEHICLES
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Control lines

e Architecture of the Apollo autonomous driving platform




HAZOP EXERCISE: PERCEPTION

Guide Word Meaning
NO OR NOT Complete negation of the design intent
¥ | MORE Quantitative increase
LESS Quantitative decrease
AS WELLAS Qualitative modification/increase
PART OF Qualitative modification/decrease
" | REVERSE Logical opposite of the design intent

OTHER THAN / INSTEAD Complete substitution
EARLY Relative to the clock time
LATE Relative to the clock time

A% BEFORE Relating to order or sequence

AFTER Relating to order or sequence

e What is the specification of the perception component?
e Use HAZOP to answer:
= What are possible deviations from the specification?
= What are potential hazards resulting from these deviations?

.14



HAZOP: BENEFITS & LIMITATIONS

Guide Word Meaning
NO OR NOT Complete negation of the design intent
MORE Quantitative increase
LESS Quantitative decrease
AS WELLAS Qualitative modification/increase
PART OF Qualitative modification/decrease
REVERSE Logical opposite of the design intent

OTHER THAN / INSTEAD Complete substitution

EARLY Relative to the clock time
LATE Relative to the clock time
BEFORE Relating to order or sequence
AFTER Helating to order or sequence

Easy to use; encourages systematic reasoning about component faults

Can be combined with FTA/FMEA to generate faults (i.e., basic events in FTA)
Potentially labor-intensive; relies on engineer's judgement

Does not guarantee to find all hazards (but also true for other techniques)



REMARKS: HAZARD ANALYSIS

e None of these methods guarantee completeness

= You may still be missing important hazards, failure modes
e Intended as structured approaches to thinking about failures

= But cannot replace human expertise and experience
e When available, leverage prior domain knowledge

= Safety standards: A set of design and process guidelines for
establishing safety

= |SO 26262, ISO 21448, IEEE P700x, etc.,

= Most do not consider Al; new standards being developed (e.g., UL
4600)



MODEL ROBUSTNESS



DEFINING ROBUSTNESS:

e Aprediction for x is robust if the outcome is stable under minor
perturbations of the input
» Vx .d(x,x )< €= f(x) =f(x)
= distance function d and permissible distance € depends on problem
e Amodelis robustif most predictions are robust



ROBUSTNESS AND DISTANCE FOR IMAGES

slight rotation, stretching, or other transformations

e change many pixels minimally (below human perception)
e change only few pixels

e change most pixels mostly uniformly, e.g., brightness

Attack  Original  Lower Upper

Rotation

=
3

Image: An abstract domain for certifying neural networks. Gagandeep et al., POPL (2019).



https://dl.acm.org/doi/pdf/10.1145/3290354

ROBUSTNESS IN A SAFETY SETTING

e Does the model reliably detect stop signs?
e Alsoin poor lighting? In fog? With a tilted camera? Sensor noise?
e With stickers taped to the sign? (adversarial attacks)

Image: David Silver. Adversarial Traffic Signs. Blog post, 2017


https://medium.com/self-driving-cars/adversarial-traffic-signs-fd16b7171906

NO MODEL IS FULLY ROBUST

e Every useful model has at least one decision boundary (ideally at the real
task decision boundary)
e Predictions near that boundary are not (and should not) be robust







EVALUATING ROBUSTNESS

e Lots of on-going research (especially for DNNs)
e Formal verification
= Constraint solving or abstract interpretation over computations in
neuron activations
= Conservative abstraction, may label robust inputs as not robust
= Currently not very scalable
= Example: An abstract domain for certifying neural networks.
Gagandeep et al., POPL (2019).
e Sampling
= Sample within distance, compare prediction to majority prediction
= Probabilistic guarantees possible (with many queries, e.g., 100k)
= Example: Certified adversarial robustness via randomized smoothing.
Cohen, Rosenfeld, and Kolter, ICML (2019).


https://dl.acm.org/doi/pdf/10.1145/3290354
https://arxiv.org/abs/1902.02918

IMPROVING ROBUSTNESS FOR SAFETY

e Robustness checking at Inference time
= Handle inputs with non-robust predictions differently (e.g. discard or
output low confidence score)
= Downside: Significantly raises cost of prediction; may not be suitable
for time-sensitive applications (e.g., self-driving cars)



IMPROVING ROBUSTNESS FOR SAFETY

e Robustness checking at Inference time
= Handle inputs with non-robust predictions differently (e.g. discard or
output low confidence score)
= Downside: Significantly raises cost of prediction; may not be suitable
for time-sensitive applications (e.g., self-driving cars)
e Design mechanisms
= Deploy redundant components for critical tasks
= Ensemble learning: Combine models with different biases
= Multiple, independent sensors (e.g., lidar + radar + cameras)



IMPROVING ROBUSTNESS FOR SAFETY

(a) Non Foggy Condition (b) Foggy Condition

e Learning more robust models
= Curate data for abnormal scenarios (e.g., fogs, snow, sensor noise)
= Augment training data with transformed versions (but same label)
e Testing and debugging
= |dentify training data near model's decision boundary (i.e., is the
model robust around all training data?)
= Check robustness on test data



Image: Automated driving recognition technologies for adverse weather conditions. Yoneda et al., IATSS Research
(2019).



SAFETY CASES



DEMONSTRATING SAFETY

The Self-Driving Car Companies Going the Distance
Number of test miles and reportable miles per disengagement in California in 2018
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How do we demonstrate to a third-party that our system is safe?
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e Guidelines & recommendations for achieving an acceptable level of safety



SAFETY & CERTIFICATION STANDARDS

e Guidelines & recommendations for achieving an acceptable level of safety
e Examples: DO-178C (airborne systems), ISO 26262 (automotive), IEC 62304
(medical software), Common Criteria (security)



SAFETY & CERTIFICATION STANDARDS

e Guidelines & recommendations for achieving an acceptable level of safety
e Examples: DO-178C (airborne systems), ISO 26262 (automotive), IEC 62304
(medical software), Common Criteria (security)
e Typically, prescriptive & process-oriented
= Recommends use of certain development processes
= Requirements specification, design, hazard analysis, testing,
verification, configuration management, etc.,



SAFETY & CERTIFICATION STANDARDS

Guidelines & recommendations for achieving an acceptable level of safety
Examples: DO-178C (airborne systems), ISO 26262 (automotive), IEC 62304
(medical software), Common Criteria (security)
Typically, prescriptive & process-oriented
= Recommends use of certain development processes
= Requirements specification, design, hazard analysis, testing,
verification, configuration management, etc.,
Limitations
= Most not designed to handle ML systems (exception: UL 4600)
= Costly to satisfy & certify, but effectiveness unclear (e.g., many FDA-
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SAFETY & CERTIFICATION STANDARDS

Guidelines & recommendations for achieving an acceptable level of safety
Examples: DO-178C (airborne systems), ISO 26262 (automotive), IEC 62304
(medical software), Common Criteria (security)
Typically, prescriptive & process-oriented
= Recommends use of certain development processes
= Requirements specification, design, hazard analysis, testing,
verification, configuration management, etc.,
Limitations
= Most not designed to handle ML systems (exception: UL 4600)
= Costly to satisfy & certify, but effectiveness unclear (e.g., many FDA-
certified products recalled due to safety incidents)
Good processes are important, but not sufficient; provides only indirect
evidence for system safety



SAFETY CASES

Sub-Claim

Claim 1

Top Level

Evidence
A

J

e Sub-Claim Evidence

Claim 3 B

|
Sub-Claim
“The Claim” Claim 2
Sub-Claim
Claim 4
A\ o L
“The Argument” “The Evidence”

e An explicit argument that a system achieves a desired safety requirement,

along with supporting evidence
e Structure:

= Argument: A top-level claim decomposed into multiple sub-claims

= Evidence: Testing, software analysis, formal verification, inspection,

expert opinions, design mechanisms...



SAFETY CASES: EXAMPLE

Vehicle avoids collision with
pedestrians

Vehicle stops before
colliding with the
detected pedestrians

N VAN

Vehicle detects
pedestrians on time

S/W controller generates
necessary braking
commands on time

Sensors provide Object detection
accurate data model is accurate

Software
verification
report

Sensor Redundant
maintenance sensor
procedure placement

Model testing
report

e Questions to think about:
= Do sub-claims imply the parent claim?
= Am | missing any sub-claims?
= |s the evidence strong enough to discharge a leaf claim?



SAFETY CASES: EXAMPLE

Uber ATG Home - Safety Case Framework

Our Self-Driving Vehicles are
acceptably safe to operate on
public roads®

Gl
Proficient Fail-Safe Continuously Resilient Trustworthy

The Self-Driving Vehicle is The Self-Driving Vehicle is |mprOVinq The Self-Driving Vehicle is The Self-Driving Enterprise
acceptably safe in presence
of faults and failures

acceptably safe during
nominal operation

acceptably safe in case of
reasonably foreseeable
misuse and unavoidable

is trustworth
Any anomaly that could y

affect the safety of the Self-
Driving Vehicle is identified,
evaluated, and resolved with
appropriate corrective and
preventative actions

events

+

Uber Safety Case



https://uberatgresources.com/safetycase/gsn

SAFETY CASES: BREAKOUT
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Build a safety case to argue that your movie recommendation system provides at
least 80% availability. Include evidence to support your argument.
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e Provides an explicit structure to the safety argument
= Easier to navigate, inspect, and refute for third-party auditors
= Provides traceability between system-level claims & low-level
evidence
= Can also be used for other types of system quality (security,

reliabiility, etc.,)
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= System evolution
o |f system changes, must reproduce the case & evidence
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e Provides an explicit structure to the safety argument
= Easier to navigate, inspect, and refute for third-party auditors
= Provides traceability between system-level claims & low-level
evidence
= Can also be used for other types of system quality (security,
reliabiility, etc.,)
e Challnges and pitfalls
= [nformal links between claims & evidence
o e.g., Does the sub-claims actually imply the top-level claim?
= Effortin constructing the case & evidence
o How much evidence is enough?
= System evolution
o |f system changes, must reproduce the case & evidence
e Tools for building & analyzing safety cases available
= e.g., ASCE/GSN from Adelard
= But ultimately, can't replace domain knowledge & critical thinking


https://www.adelard.com/gsn.html

DESIGNING FOR SAFETY



REVIEW: ELEMENTS OF SAFE DESIGN

(See Mitigation Strategies from the Lecture on Risks)

e Assume: Components will fail at some point
e Goal: Minimize the impact of failures
e Detection
= Monitoring
* Response
= Graceful degradation (fail-safe)
= Redundancy (fail over)
e Containment
= Decoupling &isolation


https://ckaestne.github.io/seai/F2020/slides/09_risks_ii/risks_ii.html#/3

SAFETY ASSURANCE WITH ML COMPONENTS

Consider ML components as unreliable, at most probabilistic guarantees
Testing, testing, testing (+ simulation)
= Focus on data quality & robustness
Adopt a system-level perspective!
Consider safe system design with unreliable components
= Traditional systems and safety engineering
= Assurance cases
Understand the problem and the hazards
= System level, goals, hazard analysis, world vs machine
= Specify end-to-end system behavior if feasible
Recent research on adversarial learning and safety in reinforcement learning



OTHER Al SAFETY
CONCERNS



https://arxiv.org/pdf/1606.06565.pdf%20http://arxiv.org/abs/1606.06565

NEGATIVE SIDE EFFECTS

Al is optimized for a specific objective/cost function
= |[nadvertently cause undesirable effects on the environment
= e.g., Transport robot: Move a box to a specific destination
o Side effects: Scratch furniture, bump into humans, etc.,
e Side effects may cause ethical/safety issues (e.g., social media example
from the Ethics lecture)
e Again, requirements problem!
= Recall: "World vs. machine"
= |dentify stakeholders in the environment & possible effects on them
Modify the Al goal from "Perform Task X" to:
= Perform X subject to common-sense constraints on the environment
= Perform X but avoid side effects to the extent possible

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. "Concrete problems
in Al safety." arXiv preprint arXiv:1606.06565 (2016).


https://www.youtube.com/watch?v=JzlsvFN_5HI
https://arxiv.org/pdf/1606.06565.pdf%20http://arxiv.org/abs/1606.06565

REWARD HACKING

PlayFun algorithm pauses the game of Tetris indefinitely to
avoid losing

When about to lose a hockey game, the PlayFun algorithm
exploits a bug to make one of the players on the opposing
team disappear from the map, thus forcing a draw.

Self-driving car rewarded for speed learns to spin in circles

Example: Coast Runner


https://www.youtube.com/watch?v=tlOIHko8ySg

REWARD HACKING

e Al can be good at finding loopholes to achieve a goal in unintended ways
e Technically correct, but does not follow designer's informal intent

e Many possible causes, incl. partially observed goals, abstract rewards,
feedback loops

* In general, a very challenging problem!

= Difficult to specify goal & reward function to avoid all possible hacks
= Requires careful engineering and iterative reward design

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. "Concrete problems
in Al safety." arXiv preprint arXiv:1606.06565 (2016).


https://arxiv.org/pdf/1606.06565.pdf%20http://arxiv.org/abs/1606.06565

REWARD HACKING -- MANY EXAMPLES

Tweet


https://twitter.com/vkrakovna/status/980786258883612672

OTHER CHALLENGES

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. "Concrete problems
in Al safety." arXiv preprint arXiv:1606.06565 (2016).


https://arxiv.org/pdf/1606.06565.pdf%20http://arxiv.org/abs/1606.06565

OTHER CHALLENGES

e Safe Exploration
= Exploratory actions "in production" may have consequences

= e.g., trap robots, crash drones
= > Safety envelopes and other strategies to explore only in safe

bounds (see also chaos engineering)

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. "Concrete problems
in Al safety." arXiv preprint arXiv:1606.06565 (2016).


https://arxiv.org/pdf/1606.06565.pdf%20http://arxiv.org/abs/1606.06565

OTHER CHALLENGES

e Safe Exploration
= Exploratory actions "in production" may have consequences

= e.g., trap robots, crash drones
= > Safety envelopes and other strategies to explore only in safe

bounds (see also chaos engineering)

e Robustness to Drift
= Drift may lead to poor performance that may not even be recognized

= > Check training vs production distribution (see data quality lecture),
change detection, anomaly detection

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. "Concrete problems
in Al safety." arXiv preprint arXiv:1606.06565 (2016).


https://arxiv.org/pdf/1606.06565.pdf%20http://arxiv.org/abs/1606.06565

OTHER CHALLENGES

e Safe Exploration
= Exploratory actions "in production" may have consequences

= e.g., trap robots, crash drones
= > Safety envelopes and other strategies to explore only in safe

bounds (see also chaos engineering)

e Robustness to Drift
= Drift may lead to poor performance that may not even be recognized

= > Check training vs production distribution (see data quality lecture),
change detection, anomaly detection

e Scalable Oversight
= Cannot provide human oversight over every action (or label all

possible training data)
= Useindirect proxies in telemetry to assess success/satisfaction

= > Semi-supervised learning? Distant supervision?

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. "Concrete problems
in Al safety." arXiv preprint arXiv:1606.06565 (2016).


https://arxiv.org/pdf/1606.06565.pdf%20http://arxiv.org/abs/1606.06565

BEYOND TRADITIONAL
SAFETY CRITICAL SYSTEMS



BEYOND TRADITIONAL SAFETY CRITICAL SYSTEMS

e Recall: Legal vs ethical

e Safety analysis not only for regulated domains (nuclear power plants,
medical devices, planes, cars, ...)

e Many end-user applications have a safety component

Examples?
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Speaker notes

What consequences should Twitter have foreseen? How should they intervene now that negative consequences of
interaction patterns are becoming apparent?



MENTAL HEALTH

= Q healthline SUBSCRIBE

HEALTH NEWS C\/ Fact Checked >

The FOMO Is Real: How Social Media
Increases Depression and Loneliness

Written by Gigen Mammoser on December 10, 2018

New research reveals how social media platforms like
Facebook can greatly affect your mental health.

—— A =y



https://www.healthline.com/health-news/social-media-use-increases-depression-and-loneliness
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https://www.healthline.com/health-news/social-media-use-increases-depression-and-loneliness
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ADDICTION
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Speaker notes

Infinite scroll in applications removes the natural breaking point at pagination where one might reflect and stop use.



ADDICTION



NO MERCY NO MALICE

Robinhood Has Gamified Online
Trading Into an Addiction

Tech’'s obsession with addiction will hurt us all

7 Scott Galloway
U Jun 23 - 7 min read % j m n [] ooo

Warning: This post contains a discussion of suicide.

ddiction is the inability to stop consuming a chemical or pursuing an
Z & activity although it’s causing harm.

I engage with almost every substance or behavior associated with
addiction: alcohol, drugs, coffee, porn, sex, gambling, work, spending,

10.


https://marker.medium.com/robinhood-has-gamified-online-trading-into-an-addiction-cc1d7d989b0c

SOCIETY: UNEMPLOYMENT ENGINEERING /
DESKILLING

10.



Speaker notes
The dangers and risks of automating jobs.
Discuss issues around automated truck driving and the role of jobs.

See for example: Andrew Yang. The War on Normal People. 2019



SOCIETY: POLARIZATION

SUBSCRIBE

THE WALL STREET JOURNAL.

TECH

Facebook Executives Shut Down Efforts
to Make the Site Less Divisive

The social-media giant internally studied how it polarizes users, then
largely shelved the research

By Jeft Horwitz and Deena Seetharaman
May 26,2020 11:38 am ET

10.
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https://www.wsj.com/articles/facebook-knows-it-encourages-division-top-executives-nixed-solutions-11590507499

Speaker notes

Recommendations for further readings: https://www.nytimes.com/column/kara-swisher,
https://podcasts.apple.com/us/podcast/recode-decode/id1011668648

Also isolation, Cambridge Analytica, collaboration with ICE, ...


https://www.nytimes.com/column/kara-swisher
https://podcasts.apple.com/us/podcast/recode-decode/id1011668648

ENVIRONMENTAL: ENERGY CONSUMPTION



NewsScientist m Q

SUBSCRIBE AND SAVE 69%

Creating an Al can be five times
worse for the planet than a car

000HO0O

TECHNOLOGY 6 June 2019

By Donna Lu



https://www.newscientist.com/article/2205779-creating-an-ai-can-be-five-times-worse-for-the-planet-than-a-car/

EXERCISE

Look at apps on your phone. Which apps have a safety risk and use machine
learning?

Consider safety broadly: including stress, mental health, discrimination, and
environment pollution




TAKEAWAY

Many systems have safety concerns

... hot just nuclear power plants, planes, cars, and medical devices

Do the right thing, even without regulation

Consider safety broadly: including stress, mental health, discrimination, and
environment pollution

Start with requirements and hazard analysis



SUMMARY

Adopt a safety mindset!
Defining safety: absence of harm to people, property, and environment

= Beyond traditional safety critical systems, affects many apps and

web services

Assume all components will eventually fail in one way or another, especially
ML components
Hazard analysis to identify safety risks and requirements; classic safety
design at the system level
Al goals are difficult to specify precisely; susceptible to negative side effect
& reward hacking
Model robustness can help with some problems

a /s



