MODEL QUALITY 2

SLICING, CAPABILITIES, INVARIANTS, AND OTHER
TESTING STRATEGIES

Christian Kaestner

Required reading:

e Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "Beyond Accuracy: Behavioral
Testing of NLP Models with CheckList." In Proceedings ACL, p. 4902-4912. (2020).

https://homes.cs.washington.edu/~wtshuang/static/papers/2020-acl-checklist.pdf

ADMINISTRATIVA

e Finalized waitlist
e Team and VM updates

e Back toin-person
m Subscribe to #lecture slack channel
= Experimental: using slack for breakout groups and polls
= Ask immediate question in person, background questions in Slack

TEAMWORK REMARK: DIVIDING THE WORK

Coordinate at meetings

Read assignment before meeting

Discuss big picture and how to divide work (inner teams?)
Consider task dependencies

Write down explicit deliverables
= |Who does what by when
= Be explicit about expected results, should be verifiable
= Track completion, check off when done
= GitHub issues, Trello board, Google docs, ... -- single source of truth,
with history tracking
Complete deliverable list during meeting: everybody writes their own
deliverables, others read all deliverables to check understanding
= if not completed during meeting or team member not at meeting,
email assignment after meeting to everybody; no objection within
24h counts as agreement with task assignment

LEARNING GOALS

Curate validation datasets for assessing model quality, covering
subpopulations and capabilities as needed

Explain the oracle problem and how it challenges testing of software and
models

Use invariants to check partial model properties with automated testing
Select and deploy automated infrastructure to evaluate and monitor model
quality

MODEL QUALITY

FIRST PART: MEASURING PREDICTION ACCURACY

the data scientist's perspective (last lecture)

SECOND PART: WHAT IS CORRECTNESS ANYWAY?

the role and lack of specifications, validation vs verification (last lecture)

THIRD PART: LEARNING FROM SOFTWARE TESTING

unit testing, test case curation, invariants, test case generation (this lecture)

LATER: TESTING IN PRODUCTION

monitoring, A/B testing, canary releases (next week)

CURATING VALIDATION
DATA & INPUT SLICING

(Learning from Software Testing)

BREAKOUT DISCUSSION

Write a few tests for the following program:

def nextDate(year: Int, month: Int, day: Int) = ...

A test may look like:

assert nextDate(2021, 2, 8) == (2021, 2, 9);

Discuss how you select tests. Discuss how many tests you need to feel
confident.

Post answer to #1ecture in Slack using template:

Selection strategy: ...
Test quantity: ...
AndrewlDs: ...

DEFINING SOFTWARE TESTING

e Program p with specification s
e Test consists of
= Controlled environment
= Test call, test inputs
= Expected behavior/output (oracle)

assertEquals(4, add(2, 2));

assertkEquals(??, factorPrime(15485863));

Testing is complete but unsound: Cannot guarantee the absence of bugs

HOW TO CREATE TEST CASES?

def nextDate(year: Int, month: Int, day: Int) = ...

Speaker notes

Can focus on specification (and concepts in the domain, such as leap days and month lengths) or can focus on
implementation

Will not randomly sample from distribution of all days

SOFTWARE TEST CASE DESIGN

Opportunistic/exploratory testing: Add some unit tests, without much
planning
Specification-based testing ("black box"): Derive test cases from
specifications

= Boundary value analysis

= Equivalence classes

= Combinatorial testing

= Random testing
Structural testing ("white box"): Derive test cases to cover implementation
paths

= Line coverage, branch coverage

= Control-flow, data-flow testing, MCDC, ...

Test execution usually automated, but can be manual too
Automated generation from specifications or code possible

EXAMPLE: BOUNDARY VALUE TESTING

Analyze the specification, not the implementation!

Key Insight: Errors often occur at the boundaries of a variable value

For each variable select (1) minimum, (2) min+1, (3) medium, (4) max-1, and
(5) maximum; possibly also invalid values min-1, max+1

Example: nextDate(2015, 6, 13) = (2015, 6, 14)
= Boundaries?

EXAMPLE: EQUIVALENCE CLASSES

Idea: Typically many values behave similarly, but some groups of values are
different
Equivalence classes derived from specifications (e.g., cases, input ranges,
error conditions, fault models)
Example nextDate(2015, 6, 13)

= |eap years, month with 28/30/31 days, days 1-28, 29, 30, 31
Pick 1 value from each group, combine groups from all variables

EXERCISE

def busTicketPrice(age: Int,
datetime: LocalDateTime,
rideTime: Int)

suggest test cases based on boundary value analysis and equivalence class testing

SELECTING VALIDATION DATA FOR MODEL
QUALITY?

VALIDATION DATA REPRESENTATIVE?

e Validation data should reflect usage data

e Be aware of data drift (face recognition during pandemic, new patterns in
credit card fraud detection)

e "Qutofdistribution" predictions often low quality (it may even be worth to
detect out of distribution data in production, more later)

(note, similar to requirements validation: did we hear all/representative
stakeholders)

NOT ALL INPUTS ARE EQUAL

"Call mom"

"What's the weather tomorrow?" "Add asafetida to my shopping list"

NOT ALL INPUTS ARE EQUAL

There Is a Racial Divide in Speech-Recognition Systems,
Researchers Say: Technology from Amazon, Apple, Google,
IBM and Microsoft misidentified 35 percent of words from
people who were black. White people fared much better. --
NYTimes March 2020

https://www.nytimes.com/2020/03/23/technology/speech-recognition-bias-apple-amazon-google.html

Tweet

.13

https://twitter.com/nke_ise/status/897756900753891328

NOT ALL INPUTS ARE EQUAL

some random mistakes vs rare but biased mistakes?

e Asystem to detect when somebody is at the door that never works for
people under 5ft (1.52m)
e Aspam filter that deletes alerts from banks

Consider separate evaluations for important subpopulations; monitor mistakes
in production

IDENTIFY IMPORTANT INPUTS

Curate Validation Data for Specific Problems and Subpopulations:

e Regression testing: Validation dataset for important inputs ("call mom") --
expect very high accuracy -- closest equivalent to unit tests

e Uniformness/fairness testing: Separate validation dataset for different
subpopulations (e.g., accents) -- expect comparable accuracy

e Setting goals: Validation datasets for challenging cases or stretch goals --
accept lower accuracy

Derive from requirements, experts, user feedback, expected problems etc. Think
specification-based testing.

IMPORTANT INPUT GROUPS FOR CANCER
PROGNOSIS?

.16

INPUT PARTITIONING

e Guide testing by identifying groups and analyzing accuracy of subgroups
= Often for fairness: gender, country, age groups, ...
= Possibly based on business requirements or cost of mistakes
e Slice test data by population criteria, also evaluate interactions
e |dentifies problems and plan mitigations, e.g., enhance with more data for
subgroup or reduce confidence

Example: Testing sentiment classifier on IMDB reviews: Similar accuracy across
genres? Across movie ages? Across review length?

Good reading: Barash, Guy, Eitan Farchi, Ilan Jayaraman, Orna Raz, Rachel Tzoref-Brill, and Marcel Zalmanovici.
"Bridging the gap between ML solutions and their business requirements using feature interactions." In Proc.
Symposium on the Foundations of Software Engineering, pp. 1048-1058. 2019.

INPUT PARTITIONING EXAMPLE

DECADE SUPPORT ACC MAIN_GENRE RAT CAT LEN_CAT SUPPORT ACC
Myster OK lon 11 72.72
1910s 38 78.94 Fasrzlt;sg OK sho%t 36 77.77
1930s 338 87.87 Crime OK long 100 81.00
Comedy GOOD long 55 96.36
1990s 3007 90.95
2000s 6192 91.40

Input divided by genre, rating, and
length. Accuracy differs, but also amount
of test data used ("support") differs,
highlighting low confidence areas.

Input divided by movie age. Notice low
accuracy, but also low support (i.e., little
validation data), for old movies.

Source: Barash, Guy, Eitan Farchi, llan Jayaraman, Orna Raz, Rachel Tzoref-Brill, and Marcel Zalmanovici. "Bridging
the gap between ML solutions and their business requirements using feature interactions." In Proc. Symposium on
the Foundations of Software Engineering, pp. 1048-1058. 2019.

INPUT PARTITIONING DISCUSSION

How to slice evaluation data for cancer prognosis?

.19

EXAMPLE: MODEL IMPROVEMENT AT APPLE
(OVERTON)

S o Det . Actions Fine-grained
@ : quality reports
: task 1 | task 2
: @D Add/augment slices slice1| v v
= Ly A Add labeling functions <——— sl!ce | A s
JSON . slice3| v v
E Add synthetic examples slice 41 % v
' Overton TT
I (7
Schema y @
Payloads + Tasks E dj @ z >
E Combine Train & Create
(specified once) E Supervision Tune Models Deployable Model

Ré, Christopher, Feng Niu, Pallavi Gudipati, and Charles Srisuwananukorn. "Overton: A Data System for Monitoring
and Improving Machine-Learned Products." arXiv preprint arXiv:1909.05372 (2019).

https://arxiv.org/abs/1909.05372

EXAMPLE: MODEL IMPROVEMENT AT APPLE
(OVERTON)

e Focus engineers on creating training and validation data, not on model

search (AutoML)
e Flexible infrastructure to slice telemetry data to identify underperforming

subpopulations -> focus on creating better training data (better, more
labels, in semi-supervised learning setting)

Ré, Christopher, Feng Niu, Pallavi Gudipati, and Charles Srisuwananukorn. "Overton: A Data System for Monitoring
and Improving Machine-Learned Products." arXiv preprint arXiv:1909.05372 (2019).

https://arxiv.org/abs/1909.05372

TESTING MODEL
CAPABILITIES

("stress testing")

Further reading: Christian Kaestner. Rediscovering Unit Testing: Testing Capabilities of ML Models. Toward Data
Science, 2021.

https://towardsdatascience.com/rediscovering-unit-testing-testing-capabilities-of-ml-models-b008c778ca81

TESTING CAPABILITIES

Even without specifications, are there "concepts" or "capabilities" the model
should learn?

Example capabilities of sentiment analysis:

e Handle negation

Robustness to typos

e |gnore synonyms and abbreviations
Person and location names are irrelevant
e |gnore gender

For each capability create specific test set (multiple examples) -- manually or
following patterns

Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "Beyond Accuracy: Behavioral Testing of
NLP Models with CheckList." In Proceedings ACL, p. 4902-4912. (2020).

https://homes.cs.washington.edu/~wtshuang/static/papers/2020-acl-checklist.pdf

TESTING CAPABILITIES

INV: Add randomly generated 06 134 248 114 74 @JetBlue that selfie was extreme. @pi9QDK INV
Robust URLs and handles to tweets ’ ’)) "’ @united stuck because staff took a break? Not happy 1K.... https://t.co/PWKI1jb INV

INV: Swap one character with @JetBlue + @JeBtlue I cri INV
its neighbor (typo) 56 102 104 52 38 @SouthwestAir no thanks + thakns INV
INV: Switching locations 70 208 148 76 64 @JetBlue I want you guys to be the first to fly to # Cuba » Canada... INV

% should not change predictions ’))) "7 @VirginAmerica I miss the #nerdbird in San Jose + Denver INV

4 INV: Switching person names 24 151 01 66 24 ...Airport agents were horrendous. Sharon + Erin was your saviour INV
should not change predictions ’)) ’ "" @united 8602947, Jon » Sean at http://t.co/58tuTgliOD, thanks. INV

From: Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "Beyond Accuracy: Behavioral
Testing of NLP Models with CheckList." In Proceedings ACL, p. 4902-4912. (2020).

https://homes.cs.washington.edu/~wtshuang/static/papers/2020-acl-checklist.pdf

TESTING CAPABILITIES

The food is not poor. pos or neutral
It isn’t a lousy customer service. pos or neutral

MFT: Negated negative should
be positive or neutral

MFT: Negated neutral should
still be neutral

18.8 542 294 132 26

This aircraft is not private. neutral

404 396 742 984 954 This is not an international flight. neutral

Negation

I thought the plane would be awful, but it wasn’t. pos or neutral
I thought I would dislike that plane, but I didn’t. pos or neutral

MFT: Negation of negative at

the end, should be pos. or neut. 1000 904 1000 848 7.2

I wouldn’t say, given it’s a Tuesday, that this pilot was great. neg
I don’t think, given my history with airplanes, that this is an amazing staff. neg

MFT: Negated positive with

neutral content in the middle 984 1000 1000 740 30.2

MFT: Author sentiment is more 454 €24 68.0 388 30.0 Some people think you are excellent, but I think you are nasty. neg
important than of others)))) " Some people hate you, but I think you are exceptional. pos

From: Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "Beyond Accuracy: Behavioral
Testing of NLP Models with CheckList." In Proceedings ACL, p. 4902-4912. (2020).

https://homes.cs.washington.edu/~wtshuang/static/papers/2020-acl-checklist.pdf

EXAMPLES OF CAPABILITIES

What could be capabilities of the cancer classifier?

RECALL: IS IT FAIR TO EXPECT GENERALIZATION
BEYOND TRAINING DISTRIBUTION?

All pictures

Target distribution: radiology images for
lung cancer

Training and test data
from one hospital

For example, shall a cancer detector generalize to other hospitals? Shall image
captioning generalize to describing pictures of star formations?

Speaker notes

We wouldn't test a first year elementary school student on high-school math. This would be "out of the training
distribution”

RECALL: SHORTCUT LEARNING

* *
« | *| | *BE ¢ <] ¢
A A A A B B B B

Categorisation by (typical) human Categorisation by Neural Network

training set
with labels A or B

i.i.d. test set

0.0.d. test set

Figure from: Geirhos, Robert, Jorn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A. Wichmann. "Shortcut learning in deep neural networks." Nature Machine Intelligence 2, no. 11
(2020): 665-673.

https://arxiv.org/abs/2004.07780

MORE SHORTCUT LEARNING :)

(A) Cow: 0.99, Pasture: (B} No Person: 0,99, Water: {C) No Person: 0.07,
.99, Grass: 0.949, No Person: (.98, Beach: .97, Outdoors: Mammal: 0.96, Water: (0.94,
0.95, Mammal: 0.98 0.97, Seashore: (.97 Beach: 0004, Two: 0,094

Figure from Beery, Sara, Grant Van Horn, and Pietro Perona. “Recognition in terra incognita.” In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 456-473. 2018.

GENERALIZATION BEYOND TRAINING
DISTRIBUTION?

e Typically training and validation data from same distribution (i.i.d.
assumption!)
e Many models can achieve similar accuracy
e Models that learn "right" abstractions possibly indistinguishable from
models that use shortcuts
= see tank detection example
= Can we guide the model towards "right" abstractions?
e Some models generalize better to other distributions not used in training

= e.g., cancer images from other hospitals, from other populations
= Drift and attacks, ...

See discussion in D'Amour, Alexander, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel,
Christina Chen et al. "Underspecification presents challenges for credibility in modern machine learning." arXiv
preprint arXiv:2011.03395 (2020).

https://arxiv.org/abs/2011.03395

TESTING CAPABILITIES MAY HELP WITH
GENERALIZATION

e Capabilities are "partial specifications", given beyond training data
Encode domain knowledge of the problem

= Capabilities are inherently domain specific

= Curate capability-specific test data for a problem
e Testing for capabilities helps to distinguish models that use intended
abstractions
May help find models that generalize better

See discussion in D'Amour, Alexander, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel,
Christina Chen et al. "Underspecification presents challenges for credibility in modern machine learning." arXiv
preprint arXiv:2011.03395 (2020).

https://arxiv.org/abs/2011.03395

STRATEGIES FOR IDENTIFYING CAPABILITIES

e Analyze common mistakes (e.g., classify past mistakes in cancer prognosis)
e Use existing knowledge about the problem (e.g., linguistics theories)

e Observe humans (e.g., how do radiologists look for cancer)

e Derive from requirements (e.g., fairness)

e Causal discovery from observational data?

Further reading: Christian Kaestner. Rediscovering Unit Testing: Testing Capabilities of ML Models. Toward Data
Science, 2021.

https://towardsdatascience.com/rediscovering-unit-testing-testing-capabilities-of-ml-models-b008c778ca81

EXAMPLES OF CAPABILITIES

What could be capabilities of image captioning system?

Caption

I The man at bat readies to swing at the

pitch while the umpire looks on.

Algorithm

GENERATING TEST DATA FOR CAPABILITIES

Idea 1: Domain-specific generators

Testing negation in sentiment analysis with template:
I {NEGATION} {POS_VERB} the {THING}.

Testing texture vs shape priority with artificial generated images:

() Texture image (b} Content image (¢) Texture-shape cue conflict
81.4% Indian elephant T1.1% tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri

8.2% black swan 3.3% Siamese cat 9.6% black swan

Figure from Geirhos, Robert, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and Wieland
Brendel. “ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and
robustness.” In Proc. International Conference on Learning Representations (ICLR), (2019).

.13

GENERATING TEST DATA FOR CAPABILITIES

Idea 2: Mutating existing inputs

Testing synonyms in sentiment analysis by replacing words with synonyms,
keeping label

Testing robust against noise and distraction add and false 1s not trueor

random URLSs to text

INV: Add randomly generated

@JetBlue that selfie was extreme. @pi9QDK INV

should not change predictions

Robust URLs and handles to tweets 96 134 248 114 74 @united stuck because staff took a break? Not happy 1K.... hitps://t.co/PWKI1jb INV
INV: Swap one character with @JetBlue » @JeBtlue I cri INV
its neighbor (typo) 36 102 104 52 338 @SouthwestAir no thanks + thakns INV
INV: Switching locations 70 208 148 76 64 @JetBlue I want you guys to be the first to fly to # Cuba » Canada... INV
5 should not change predictions ’ ‘ ’ ’ © @VirginAmerica I miss the #nerdbird in San Jose + Denver INV
Z INV: Switching person names 24 151 91 66 24 ...Airport agents were horrendous. Sharon » Erin was your saviour INV

@united 8602947, Jon » Sean at http://t.co/58tuTgliOD, thanks. INV

Figure from: Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "Beyond Accuracy:
Behavioral Testing of NLP Models with CheckList." In Proceedings ACL, p. 4902-4912. (2020).

https://homes.cs.washington.edu/~wtshuang/static/papers/2020-acl-checklist.pdf

GENERATING TEST DATA FOR CAPABILITIES

Idea 3: Crowd-sourcing test creation

Testing sarcasm in sentiment analysis: Ask humans to minimally change text to flip
sentiment with sarcasm

Testing background in object detection: Ask humans to take pictures of specific
objects with unusual backgrounds

Recasting fact as hoped for The world of Atlantis, hidden beneath the earth’s core, is fantastic
The world of Atlantis, hidden beneath the earth’s core is supposed
to be fantastic

Suggesting sarcasm thoroughly captivating thriller-drama, taking a deep and real-
istic view
thoroughly mind numbing *thriller-drama”, taking a “‘deep”
and “realistic”” (who are they kidding?) view

Inserting modifiers The presentation of simply Atlantis’ landscape and setting
The presentation of Atlantis” predictable landscape and setting

Figure from: Kaushik, Divyansh, Eduard Hovy, and Zachary C. Lipton. “Learning the difference that makes a
difference with counterfactually-augmented data.” In Proc. International Conference on Learning Representations
(ICLR), (2020).

GENERATING TEST DATA FOR CAPABILITIES

Idea 4: Slicing test data

Testing negation in sentiment analysis by finding sentences containing 'not'

Actions Fine-grained
quality reports

: task 1 | task 2
I @ Add/augment slices slice1| ¢

Supervision Data

(specified once) Supervision Tune Models Deployable Model

v
= <= . Addlabeling functions <——— [S1€2} V | ¥
JSON . slice3| v v
: Add synthetic examples slice4: % v
. Overton TT
: (7
Schema /'\éi\u @
Payloads + Tasks | @ @
E Combine Train & Create

https://arxiv.org/abs/1909.05372

Ré, Christopher, Feng Niu, Pallavi Gudipati, and Charles Srisuwananukorn. "Overton: A Data System for Monitoring
and Improving Machine-Learned Products." arXiv preprint arXiv:1909.05372 (2019).

https://arxiv.org/abs/1909.05372

EXAMPLES OF CAPABILITIES

How to generate test data for capabilities of the cancer classifier?

TESTING VS TRAINING CAPABILITIES

e Dual insight for testing and training

e Strategies for curating test data can also help select training data

e Generate capability-specific training data to guide training (data
augmentation)

Further reading on using domain knowledge during training: Von Rueden, Laura, Sebastian Mayer, Jochen Garcke,
Christian Bauckhage, and Jannis Schuecker. "Informed machine learning-towards a taxonomy of explicit
integration of knowledge into machine learning." Learning 18 (2019): 19-20.

PRELIMINARY SUMMARY: SPECIFICATION-BASED
TESTING TECHNIQUES AS INSPIRATION

e Boundary value analysis

e Partition testing & equivalence classes
e Combinatorial testing

e Decision tables

Use to identify datasets for subpopulations and capabilities, not individual tests.

ON TERMINOLOGY

e Test data curation is emerging as a very recent concept for testing ML
components
e No consistent terminology
= "Testing capabilities" in checklist paper
= "Stress testing" in some others (but stress testing has a very different
meaning in software testing: robustness to overload)
e Software engineering concepts translate, but names not adopted in ML
community
= specification-based testing, black-box testing
= equivalence class testing, boundary-value analysis

AUTOMATED (RANDOM)
TESTING AND INVARIANTS

(if it wasn't for that darn oracle problem)

RANDOM TEST INPUT GENERATION IS EASY

void testNextDate() {
nextDate (488867101, 1448338253, -997372169)
nextDate (2105943235, 1952752454, 302127018)
nextDate(1710531330, -127789508, 1325394033)
nextDate(-1512900479, -439066240, 889256112)

nextDate (1853057333, 1794684858, 1709074700)
nextDate(-1421091610, 151976321, 1490975862)
nextDate(-2002947810, 680830113, -1482415172)
nextDate(-1907427993, 1003016151, -2120265967)

But is it useful?

CANCER IN RANDOM IMAGE?

RANDOMLY GENERATING "REALISTIC" INPUTS IS
POSSIBLE

void testNextDate() {
nextDate (2010, 8, 20)
nextDate (2024, 7, 15)
nextDate(2011, 10, 27)

nextDate(2024, 5, 4)
nextDate(2013, 8, 27)
nextDate(2010, 2, 30)

But how do we know whether the computation is correct?

AUTOMATED MODEL VALIDATION DATA
GENERATION?

volid testCancerPrediction() {
cancerModel.predict(generateRandomImage())
cancerModel.predict(generateRandomImage())
cancerModel.predict(generateRandomImage())

}

e Realistic inputs?
e But how do we get labels?

THE ORACLE PROBLEM

How do we know the expected output of a test?

assertEquals(??, factorPrime(15485863));

TEST CASE GENERATION & THE ORACLE PROBLEM

e Manually construct input-output pairs (does not scale, cannot automate)

e Comparison against gold standard (e.g., alternative implementation,
executable specification)

e Checking of global properties only -- crashes, buffer overflows, code
injections

e Manually written assertions -- partial specifications checked at runtime

Parameters Fail Parameters Assertions

Input
generator

Normal
—————> (Crash

Input

>N V)

SUT Comparator Pass
generator
Golden

standard

MANUALLY CONSTRUCTING OUTPUTS

void testNextDate() {
assert nextDate(2010, 8, 20) == (2010, 8, 21);
assert nextDate(2024, 7, 15) == (2024, 7, 16);
assert nextbDate(2011, 10, 27) == (2011, 10, 28);
assert nextDate(2024, 5, 4) == (2024, 5, 5);
assert nextDate(2013, 8, 27) == (2013, 8, 28);
assert nextDate(2010, 2, 30) throws InvalidInputException;

void testCancerPrediction() {
assert cancerModel.predict(loadImage("randoml.jpg")) == true;
assert cancerModel.predict(loadImage("random2.jpg")) == true;
assert cancerModel.predict(loadImage('"random3.jpg")) == false;

}

(tedious, labor intensive; possibly crowd sourced)

COMPARE AGAINST REFERENCE IMPLEMENTATION

assuming we have a correct implementation

void testNextDate() {
assert nextDate(2010, 8, 20) == referencelLib.nextDate(2010, 8,
assert nextDate(2024, 7, 15) == referencelLib.nextDate(2024, 7,
assert nextDate(2011, 10, 27) == referencelLib.nextbDate(2011, 1
assert nextDate(2024, 5, 4) == referencelLib.nextDate(2024, 5,
assert nextDate(2013, 8, 27) == referencelLib.nextDate(2013, 8,
assert nextDate(2010, 2, 30) == referencelLib.nextDate(2010, 2,

volid testCancerPrediction() {
assert cancerModel.predict(loadImage('"randoml.jpg")) == ?2?7?;

}

(usually no reference implementation for ML problems)

CHECKING GLOBAL SPECIFICATIONS

Ensure, no computation crashes

void testNextDate() {
nextDate (2010, 8, 20)
nextDate (2024, 7, 15)
nextDate(2011, 10, 27)
nextDate(2024, 5, 4)
nextDate(2013, 8, 27)
nextDate(2010, 2, 30)

volid testCancerPrediction() {
cancerModel.predict(generateRandomImage())
cancerModel.predict(generateRandomImage())
cancerModel.predict(generateRandomImage())

}

(we usually do fear crashing bugs in ML models)

INVARIANTS AS PARTIAL SPECIFICATION

class Stack {
int size = 0;
int MAX_SIZE = 100;
String[] data = new String[MAX_SIZE];

private void check() {
assert(size>=0 && size<=MAX_SIZE);
¥
public void push(String v) {
check();
1f (size<MAX_SIZE)
data[+size] = v;
check();

¥
public void pop(String v) { check(); ...

.11

AUTOMATED TESTING / TEST CASE GENERATION /
FUZZING

e Many techniques to generate test cases
e Dumb fuzzing: generate random inputs

e Smart fuzzing (e.g., symbolic execution, coverage guided fuzzing): generate
inputs to maximally cover the implementation

e Program analysis to understand the shape of inputs, learning from existing
tests

e Minimizing redundant tests
e Abstracting/simulating/mocking the environment

» Typically looking for crashing bugs or assertion violations

TEST GENERATION EXAMPLE (SYMBOLIC

EXECUTION)
Code: Paths:
void foo(a, b, c) { ® a A (b<5)x=2,y=0,z=2

int x=0, y=0, z=0; * a A ~(b <5):x=-2,y=0, z=0
i; Ele))(:%z; * ~a A (ma A c):x=0,2=1,z=2

if ('a && c) y=1; e =a A (b<5)N-(—aA c):x=0,z=0

z=2; z=2
} — = T *X= =
assert(x+y+z1=3) . a2A (b <5) A =(=a A ¢):x=0, z=0

Z:

e -a A ~(b < 5):x=0,2z=0,z=0

)

)

.13

Speaker notes

example source: http://web.cs.iastate.edu/~weile/cs641/9.SymbolicExecution.pdf

http://web.cs.iastate.edu/~weile/cs641/9.SymbolicExecution.pdf

GENERATING INPUTS FOR ML PROBLEMS

Completely random data generation (uniform sampling from each feature's
domain)

Using knowledge about feature distributions (sample from each feature's
distribution)

Knowledge about dependencies among features and whole population
distribution (e.g., model with probabilistic programming language)

Mutate from existing inputs (e.g., small random modifications to select
features)

Generate "fake data" with Generative Adversarial Networks

MACHINE LEARNED MODELS = UNTESTABLE
SOFTWARE?

volid testCancerPrediction() {

cancerModel.predict(generateRandomImage())

}

Manually construct input-output pairs (does not scale, cannot automate)

= too expensive at scale
Comparison against gold standard (e.g., alternative implementation,
executable specification)

= no specification, usually no other "correct" model

= comparing different techniques useful? (see ensemble learning)

= semi-supervised learning as approximation?
e Checking of global properties only -- crashes, buffer overflows, code
injections - ??
e Manually written assertions -- partial specifications checked at runtime - 7?

.15

INVARIANTS IN MACHINE LEARNED MODELS
(METAMORPHIC TESTING)

Exploit relationships between inputs

If two inputs differ only in X -> output should be the same

If inputs differ in Y output should be flipped

If inputs differ only in feature F, prediction for input with higher F should be
higher

INVARIANTS IN MACHINE LEARNED MODELS?

.17

SOME CAPABILITIES ARE INVARIANTS

Some capability tests can be expressed as invariants and automatically
encoded as transformations to existing test data

e Negation should flip sentiment analysis result
e Typos should not affect sentiment analysis result
e Changes to locations or names should not affect sentiment analysis results

INV: Add randomly generated

@]JetBlue that selfie was extreme. @pi9QDK INV

should not change predictions

Robust URLs and handles to tweets 96 134 248 114 74 @united stuck because staff took a break? Not happy 1K.... https://t.co/PWKI1jb INV
INV: Swap one character with @JetBlue + @JeBtlue I cri INV
its neighbor (typo) 56 102 104 52 38 @SouthwestAir no thanks » thakns INV
INV: Switching locations 70 208 148 7.6 64 @JetBlue I want you guys to be the first to fly to # Cuba » Canada... INV
5 should not change predictions) ')) "7 @VirginAmerica I miss the #nerdbird in San Jose + Denver INV
< INV: Switching person names 24 151 91 66 24 ...Airport agents were horrendous. Sharon + Erin was your saviour INV

@united 8602947, Jon » Sean at http://t.co/58tuTgliOD, thanks. INV

From: Ribeiro, Marco Tulio, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. "Beyond Accuracy: Behavioral
Testing of NLP Models with CheckList." In Proceedings ACL, p. 4902-4912. (2020).

https://homes.cs.washington.edu/~wtshuang/static/papers/2020-acl-checklist.pdf

EXAMPLES OF INVARIANTS

Credit rating should not depend on gender:

= Vx. f(x[gender — male]) = f(x[gender < female])
Synonyms should not change the sentiment of text:

= Vx. f(x) = f(replace(x, "is not", "isn't"))
Negation should swap meaning:

m Vx € "XisY". f(x) = 1 — f(replace(x, " is ", " is not "))
Robustness around training data:

= Vx € training data. Vy € mutate(x,). f(x) = f(y)
Low credit scores should never get a loan (sufficient conditions for
classification, "anchors"):

= Vx. x. score < 649 = —f(x)

|dentifying invariants requires domain knowledge of the problem!

METAMORPHIC TESTING

Formal description of relationships among inputs and outputs (Metamorphic
Relations)

In general, for a model f and inputs x define two functions to transform inputs and
outputs g;and g such that:

Vx. f(g(x) = gp(f(x)

mnm o n

e.g. g;{(x) = replace(x, "is ", "isnot ") and g ,(x) = —x

ON TESTING WITH INVARIANTS/ASSERTIONS

e Defining good metamorphic relations requires knowledge of the problem

domain

Good metamorphic relations focus on parts of the system

e |nvariants usually cover only one aspect of correctness -- maybe capabilities

e |nvariants and near-invariants can be mined automatically from sample data
(see specification mining and anchors)

Further reading:

e Segura, Sergio, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. "A survey on metamorphic
testing." IEEE Transactions on software engineering 42, no. 9 (2016): 805-824.

e Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Anchors: High-precision model-agnostic
explanations." In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

https://core.ac.uk/download/pdf/74235918.pdf
https://sameersingh.org/files/papers/anchors-aaai18.pdf

INVARIANT CHECKING ALIGNS WITH
REQUIREMENTS VALIDATION

'y ‘\ H k. . 3
Interviews, I ‘- Machine | + % Requirements
Req. Synthesrs '. Learning : / +/ Analysis

v/ b
More
Specification Specifications

Coding

Validation

More
M Specifications
(e.g. Fairness,
Safeguards)

Generate/
Pickle

Y
ML Model

Coding
Verification f

Implementation

V
Implementation

APPROACHES FOR CHECKING IN VARIANTS

e Generating test data (random, distributions) usually easy

e Transformations of existing test data

e Adversarial learning: For many techniques gradient-based techniques to
search for invariant violations -- that's roughly analogous to symbolic
execution in SE

e Early work on formally verifying invariants for certain models (e.g., small
deep neural networks)

Further readings: Singh, Gagandeep, Timon Gehr, Markus Plischel, and Martin Vechev. "An abstract domain for
certifying neural networks." Proceedings of the ACM on Programming Languages 3, no. POPL (2019): 1-30.

https://dl.acm.org/doi/pdf/10.1145/3290354

USING INVARIANT VIOLATIONS

e Areinvariants strict?
= Single violation in random inputs usually not meaningful
= |n capability testing, average accuracy in realistic data needed
= Maybe strict requirements for fairness or robustness?

e Do invariant violations matter if the input data is not representative?

.24

ONE MORE THING: SIMULATION-BASED TESTING

e |[nsome cases itis easy to go from outputs to inputs:

assertkEquals(??, factorPrime(15485862));

randomNumbers = [2, 3, 7, 7, 52673]
assertEquals(randomNumbers,
factorPrime(multiply(randomNumbers)));

Similar idea in machine-learning problems?

6.

25

ONE MORE THING: SIMULATION-BASED TESTING

e Derive input-output pairs from
simulation, esp. in vision systems
e Example: Vision for self-driving cars:
m Render scene -> add noise ->
recognize -> compare recognized
result with simulator state
e Quality depends on quality of the SRl
simulator and how well it can produce
inputs from outputs:
m examples: render picture/video, inout
synthesize speech, ...
m Less suitable where input-output
relationship unknown, e.g.,
cancer prognosis, housing price
prediction, shopping
recommendations

simulation prediction

Further readings: Zhang, Mengshi, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid. "DeepRoad: GAN-based metamorphic
testing and input validation framework for autonomous driving systems." In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pp. 132-142. 2018.

PRELIMINARY SUMMARY: INVARIANTS AND
GENERATION

e Generating sample inputs is easy, but knowing corresponding outputs is not
(oracle problem)

e Crashing bugs are not a concern

e |nvariants + generated data can check capabilities or properties
(metamorphic testing)

= |nputs can be generated realistically or to find violations (adversarial
learning)

e |finputs can be computed from outputs, tests can be automated

(simulation-based testing)

ON TERMINOLOGY

e Metamorphic testing is a software engineering term that's not common in ML
literature, it generalizes many concepts regularly reinvented

e Much of the security, safety and robustness literature in ML focuses on
invariants

OTHER TESTING CONCEPTS

TEST COVERAGE

Packages —1 Coverage Report - All Packages
All
et sourcelorae. cobertura ant Package * & Classes Line Coverage Branch Coverage Complexity
B ——— Al Packages 55 7o [s I s [v 2319
net.sourceforge. cobertura.check
S — | net.sourceforge. cobertura, ant 1n =2 [= [1.848
3 net sourceforge cobertura check 3 o= [o [2.429
net.sourceforge. cobertura. instrument
net sourceforae. cobertura.merge net sourceforge cobertura coveragedata 13 HiA HiA 2277
net.sourceforge cobertura.reporting Det.sourcetorge.coberuira nSrument 10 0% _ T _ 1854
net.sourceforge. cobertura.reporting. htr net.sourceforge cobertura merge 1 e _ s _ 55
net.suumefnrgg.mbertura.remrtim.htrJ net. sourceforge.cobertura reporting 3 S _ 0% _ 2552
net.sourceforge. cobertura, reporting. xm net.sourceforge. cobertura.reporting. himl 4 =1« [T [4.444
net.sourceforge. cobertura, util » net.sourceforge.cobertura.reporting htmi files - ere [e+ [45
F— net sourceforge. cobertura.reporting.xmi 1 oo IS o5 | 1524
d =) > || netsouceforge.coberau 9 o [ara— o [ol N 2892
All Packages || semeotherpackage 1 =+ [NIA 12
Report generated by Cobertura 1.9 on 6/9/07 12:37 AM.
Classes
AntUtil (88%)
Archive (100%)
ArchiveUtil (80%)
BranchCoverageData (N/A)
CheckTask (09)
ClassData (N/A)
Classinstrumenter (94%)
ClassPattern (100%6)
CoberturaFile (73%)
CommandLineBuilder (96%)
CommenMatehingTask (88%)
ComplexityCalculator (100%)
ConfigurationUtil {50%)
CopyFiles (87%)

CoverageData (N/A)
CoverageDataContainer (N/4)
CoverageDataFileHandler (N/4)
CoverageRate (0%)

ExcludeClasses (100%)

EileFinder {96%)

FileLocker {0%)
EirstPassMethodinstrumenter (100%)
HTMLREeport (94%)
HasBeen|nstrumented (N/4)

Heager (o)

1OUtil (62%)

Ignore (100%)
lgnoreBranches (0%)

l

EXAMPLE: STRUCTURAL TESTING

int divide(int A, int B) {

return -1,
return A / B;

}

minimum set of test cases to cover all lines? all decisions? all path?

Packages — | Coverage Report - All Packages
Al Package * £ Classes
Et. efi .cobertura.ant -
net.sourceforge. cobertura. al All Packages 55 3319
net.sourceforge. cobertura.check
net.sourceforge.cobertura. ant 1n 52% 1.848
net.sourceforge. cobertura. coveragedal
_ net sourceforge. cobertura check 3 0% 2429
net.sourceforge. cobertura. instrument
net sourceforoe. cobertura. merge net.sourc:eforqe.mEnura.wraqMata 13 NiA 2277
. . oe. . ’
net sourceforae cobertura. renori net.sourceforge.cobertura. instrument 10 S0 1854
net.sourceforae.cobertura.reporting. htr net.sourcefnrge.mbertura.mergg 1 B6% 5.5
net.sourceforge. cobertura. reporting. hir net.sourceforge.cobertura.reporting 3 879 2.882
net sourceforge. cobertura. reporting. xm — net.sourceforge.cobertura. reporting. himl 4 1% 4.444
net.sourceforge. cobertura.util y net.sourceforge.cobertura. reporting. himl files 1 879 45
u . net.sourceforge.cobertura. reporting. xmi 1 100%% 1524
net. sourceforge cobertura. it 0% ’
| L& i be i 9 2.892
someotherpackage 1 B 12
All Packages -
Report generated by Cobertura 1.9 on 6/9%07 12:37 AM.
Classes
AntUtil (88%)
Archive (100%)
Archiveltil (80%)
BranchCoverageData (N/A)
CheckTask (09%)

ClassData (N/A)
Classlnstrumenter (S4%,)
ClassPattern (100%)
CoberturaFile (73%)
CommandLineBuilder (96%)
Co atching T ask (28%)
ComplexityCalculator (100%)
Configurationltil {50%)
CopyFiles (87%)
CoverageData (N/A)
CoverageDataContainer (N/A)
CoverageDataFileHandler (N/A)
CoverageRate (0%)
ExcludeClasses (100%)
EileFinder (96%)

EileLocker (0%
EirstPassMethodinstrumenter {100%)
HTMLReport (94%)
HasBeen|nstrumented (N/4)
Header (80%;)

OUtil (629)

lgnore (100%)
lgnoreBranches (0%)

< | l >

DEFINING STRUCTURAL TESTING ("WHITE BOX")

e Test case creation is driven by the implementation, not the specification

e Typically aiming to increase coverage of lines, decisions, etc

e Automated test generation often driven by maximizing coverage (for finding
crashing bugs)

WHITEBOX ANALYSIS IN ML

Several coverage metrics have been proposed
= All path of a decision tree?
= All neurons activated at least once in a DNN? (several papers "neuron
coverage")
= Linear regression models??
Often create artificial inputs, not realistic for distribution
Unclear whether those are useful
Adversarial learning techniques usually more efficient at finding invariant
violations

REGRESSION TESTING

Whenever bug detected and fixed, add a test case
Make sure the bug is not reintroduced later
Execute test suite after changes to detect regressions
= |deally automatically with continuous integration tools

Maps well to curating test sets for important populations in ML

MUTATION ANALYSIS

e Start with program and passing test suite

e Automatically insert small modifications ("mutants") in the source code
= a+tb->a-b
= a<b->a<=b
u cee

e Can program detect modifications ("kill the mutant")?

e Better test suites detect more modifications ("mutation score")

int divide(int A, int B) {
if (A==0)
return 0;
if (B==0)
return -1;
return A / B;

ks
assert(1, divide(1,1));
assert(0, divide(0,1));
assert(-1, divide(1,0));

MUTATION ANALYSIS

Some papers exist, but strategy unclear
Mutating model parameters? Mutating hyperparameters? Mutating inputs?
What's considered as killing a mutant, if we don't have specifications?

Still unclear application...

ONTINUOUS INTEGRATION
FOR MODEL QUALITY

V/4

2017-08-19-06-29-22-855-UTC

Test Data Performance

0.7936

0.4907

PERFORMANCE MODEL VIS FEATURES

0.288

Precision-Recall

reliability

ROC Confusion Matrix

FPR 0252
TPR 09

The reliability diagram shows how reliable (or "well-calibrated’)
'e model's probability are when evaluated on the
data. For example, A well calibrated (binatry) model should
classify the samples such that among the samples to which it
gives a probability close to 0.8 of belonging to the positive
class, approximately 80% of those samples actually belong to
the po:

tive class.

A Perfectly Calibrated Model
This Mode! (Before Calibration)
— This Model (After Calibration)

™
052
44549 Samples

https://eng.uber.com/michelangelo/

CONTINUOUS INTEGRATION

-

& Build #17 - wyvernlz: x |

&~ C' A& & https://travis-ci.org/wyvernlang/

Help anathan Aldrich e

wyvernlang / wyvern ©

My } inche Build #17
J wyve & fnyvern 17 (/B SimpleWyvern-devel Asserting false (works on Linux, so its C 17 passed
h g Commit fd7bel

Remove Log 4= Download Log

Using worker: worker-linux-827f8498-1.bb.travis-ci.org:travis-linux-2

Build system information

$ git clone --depth=58 --branch=Simplekyvern-devel
% jdk_switcher use oraclejdks
Switching to Oracle JDKB (java-8-oracle), JAVA HOME will be set to fusr/lib/jvm/java-8-oracle

$ java -Xmx32m -version

Java(TM) SE Runtime Enviromment (build 1.8.8_31-bl3)

Java HotSpot(TM) B4-Bit Server VM (build 25.31-b@7, mixed mode)
$ javac -J-Xmx32m -version

javac 1.8.8_31

$ cd tools

The command "cd tools™ exited with 8.
$ ant test

Buildfile: /fhome/travis/build/wyvernlang/wyvern/tools/build.xml

copper-compose-compile:
[mkdir] Created dir: /home/travis/build/wyvernlang/wyvern/tools/copper-composer/bin

[Jjavac] Shome/travis/build/wyvernlang/wyvern/tools/build.xml:18: warning: "includeantruntime®

was not set, defaulting to build.sysclasspath=last; set to false for repeatable builds

CONTINUOUS INTEGRATION FOR MODEL QUALITY?

CONTINUOUS INTEGRATION FOR MODEL QUALITY

e Testing script
= Existing model: Implementation to automatically evaluate model on
labeled training set; multiple separate evaluation sets possible, e.g.,
for critical subcommunities or regressions
= Training model: Automatically train and evaluate model, possibly
using cross-validation; many ML libraries provide built-in support
= Report accuracy, recall, etc. in console output or log files
= May deploy learning and evaluation tasks to cloud services
= Optionally: Fail test below quality bound (e.g., accuracy <.9; accuracy
< accuracy of last model)
e Version control test data, model and test scripts, ideally also learning data
and learning code (feature extraction, modeling, ...)
e Continuous integration tool can trigger test script and parse output, plot for
comparisons (e.g., similar to performance tests)
e Optionally: Continuous deployment to production server

DASHBOARDS FOR MODEL EVALUATION RESULTS

PERFORMANCE MODEL VIS FEATURES

Test Data Performance

0.0584

Precision-Recall

0.7936

reliability

0.4907

ROC Confusion Matrix
L:‘ FPR: 0.252
F.Q TPR C.09
0.7
06
05 ™
ot YES 0.21
03 17604 Samples
0.2
01 FP

0.288

The reliability diagram shows how reliable (or "well-calibrated”)
the model's probability estimates are when evaluated on the
test data. For example, A well calibrated (binatry) model should
classify the samples such that among the samples to which it
gives a probability close to 0.8 of belonging to the positive
class, approximately 80% of those samples actually belong to
the positive class. More

A Perfectly Calibrated Model
This Model (Before Calibration)
= This Model (After Calibration)

FN
0.093

7891 Samples

™

0.52
44549 Samples

8.5

https://eng.uber.com/michelangelo/
https://eng.uber.com/michelangelo/

SPECIALIZED CI SYSTEMS

Test Condition and Reliability Guarantees

' ml:
Github Re p05|tory E - script : ./test_model.py
. o J, / t - [
ra\ﬂs ml ! I"'E].‘Lﬂblllty ©.9999
“,"' Y ' - mode : fp-free
| o ./.tEStSEt ' - adaptivity : full
© Provide N test examples - steps o %? ______________________
-' ./ml_codes F
———————————————————— N or Femeecesseme——————
Technical Contribution Example Test
Provide guidelines on e Commit Condition
how large N is ina 2 new ML New model has at

declarative, rigorous,
but still practical way,
enabled by novel
system optimization
techniques.

model/code

ml/ci passed ml/ci failed

least 2% higher
accuracy, estimated
within 1% error,

or with probability

R—J M"‘

0.9999.
O Get pass/fail signal L. _____

Renggli et. al, Continuous Integration of Machine Learning Models with ease.ml/ci: Towards a Rigorous Yet
Practical Treatment, SysML 2019

http://www.sysml.cc/doc/2019/162.pdf

DASHBOARDS FOR COMPARING MODELS

Github Docs
Listing Price Prediction
Experiment ID: 0 Artifact Location: /Users/matei/mlflow/demo/miruns/0
Search Runs: metrics.R2 > 0.24 m
Filter Params: Filter Metrics: Clear
4 matching runs Download CSV X,
Parameters Metrics

Time User Source Version alpha 11_ratio MAE R2 RMSE

17:37 matei linear.py 3a1995 0.5 0.2 84.27 0.277 158.1

17:37 matei linear.py 3a1995 0.2 0.5 84.08 0.264 159.6

17:37 matei linear.py 3a1995 0.5 0.5 84.12 0.272 158.6

17:37 matei linear.py 3a1995 0 0 84.49 0.249 161.2

Matei Zaharia. Introducing MLflow: an Open Source Machine Learning Platform, 2018

https://databricks.com/blog/2018/06/05/introducing-mlflow-an-open-source-machine-learning-platform.html

SUMMARY

e Curating test data
= Analyzing specifications, capabilities
= Not all inputs are equal: Identify important inputs (inspiration from
specification-based testing)
= Slice data for evaluation
= |dentifying capabilities and generating relevant tests
e Automated random testing
= Feasible with invariants (e.g. metamorphic relations)
= Sometimes possible with simulation
e Automate the test execution with continuous integration

FURTHER READINGS

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. "Semantically equivalent
adversarial rules for debugging NLP models." In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 856-865.
2018.

Barash, Guy, Eitan Farchi, llan Jayaraman, Orna Raz, Rachel Tzoref-Brill, and Marcel
Zalmanovici. "Bridging the gap between ML solutions and their business requirements
using feature interactions." In Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pp. 1048-1058. 2019.

Ashmore, Rob, Radu Calinescu, and Colin Paterson. "Assuring the machine learning
lifecycle: Desiderata, methods, and challenges." arXiv preprint arXiv:1905.04223. 2019.
Christian Kaestner. Rediscovering Unit Testing: Testing Capabilities of ML Models. Toward
Data Science, 2021.

D'Amour, Alexander, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex
Beutel, Christina Chen et al. "Underspecification presents challenges for credibility in
modern machine learning." arXiv preprint arXiv:2011.03395 (2020).

Segura, Sergio, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. "A survey on
metamorphic testing." IEEE Transactions on software engineering 42, no. 9 (2016): 805-

824.

https://www.aclweb.org/anthology/P18-1079.pdf
https://dl.acm.org/doi/abs/10.1145/3338906.3340442
https://arxiv.org/abs/1905.04223
https://towardsdatascience.com/rediscovering-unit-testing-testing-capabilities-of-ml-models-b008c778ca81
https://arxiv.org/abs/2011.03395
https://core.ac.uk/download/pdf/74235918.pdf

