INFRASTRUCTURE QUALITY,
DEPLOYMENT, AND
OPERATIONS

Christian Kaestner

Required reading: Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for
ML Production Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

Recommended readings:

e O'Leary, Katie, and Makoto Uchida. "Common problems with Creating Machine Learning Pipelines from
Existing Code." Proc. Third Conference on Machine Learning and Systems (MLSys) (2020).
e LarysaVisengeriyeva. Machine Learning Operations - A Reading List, InnoQ 2020

https://research.google.com/pubs/archive/46555.pdf
https://research.google/pubs/pub48984.pdf
https://ml-ops.org/content/references.html

LEARNING GOALS

Implement and automate tests for all parts of the ML pipeline
Understand testing opportunities beyond functional correctness
Automate test execution with continuous integration

Deploy a service for models using container infrastructure
Automate common configuration management tasks

Devise a monitoring strategy and suggest suitable components for
implementing it

Diagnose common operations problems

Understand the typical concerns and concepts of MLOps

BEYOND MODEL AND DATA
QUALITY

POSSIBLE MISTAKES IN ML PIPELINES

(
’
o

— ~—] = = ass x
? Model Y pata— > Data— ¥ Data— = Feature = Model * Model S Model T Model
Requirements Collection Cleaning Labeling Engineering Training Evaluation Deployment Monitoring

Danger of "silent" mistakes in many phases

POSSIBLE MISTAKES IN ML PIPELINES

Danger of "silent" mistakes in many phases:

e Dropped data after format changes

e Failure to push updated model into production
 Incorrect feature extraction

e Use of stale dataset, wrong data source

e Data source no longer available (e.g web API)

e Telemetry server overloaded

e Negative feedback (telemtr.) no longer sent from app
e Use of old model learning code, stale hyperparameter
e Data format changes between ML pipeline steps

BUILDING ROBUST PIPELINE AUTOMATION

e Support experimentation and evolution
= Automate
= Design for change
= Design for observability
= Testing the pipeline for robustness
e Thinking in pipelines, not models
Integrating the Pipeline with other Components

ggds,ll re- Data Data Data Feature Model Model Model De- Model
me?ﬂs Collection Labeling Cleaning Engineer. Training Evaluation ployment Monitoring

/ NS N SN

System Data entry de5|gn, Labeling interface, Domain expertise, Distributed data Model Integration Model System monltoring,

requirements Data scraping, Crowdsourcing design, Feature server, storage and inference testing, inference telemetry
Telemetry design ~ Weak supervision Data quality computing requirem. A/Btesting service

Software engineers Data engineers, Operators Software engineers,

Requirements engineers Domain experts Operators

PIPELINES ARE CODE

From experimental notebook code to production code

Each stage as a function or module

Well tested in isolation and together

Robust to changes in inputs (automatically adapt or crash, no silent
mistakes)

Use good engineering practices (version control, documentation, testing,
naming, code review)

EVERYTHING CAN BE TESTED?

Speaker notes

Many qualities can be tested beyond just functional correctness (for a specification). Examples: Performance, model
guality, data quality, usability, robustness, ... not all tests are equality easy to automate

TESTING STRATEGIES

e Performance
e Scalability

e Robustness

e Safety

e Security

e Extensibility

e Maintainability
e Usability

How to test for these? How automatable?

TEST AUTOMATION

FROM MANUAL TESTING TO CONTINUOUS
INTEGRATION

& Build #17 - wyvemle. x \
€« C A & https://travis-ci.org

onatha

wyvernlang / wyvern ©

Build #1

| MyReposito

works on Linux, so its O

ad our docs on how' t

This job ran on our leg

Remove Log Download Log

Using worker: worker-1inux-827f8498-1.bb.travis-ci.org:travis-1inux-2

Build system information

$ git clone --depth=5@ --branch-Simpleyvern-devel
$ jak_switcher use oraclejaks
Switching te Oracle JDK8 (java-8-oracle), JAVA HOME will be set to fusr/lib,
$ java -Xmx32m -version

java version "1.8.8 31"

Java(TM) SE Runtime Envi

Java HotSpot(THM) 64-Bit Server VM (build 25.31-b87, mixed mode)

$ javac -J-Xmx32m -version

javac 1.8.8_31

$ cd tools

The command "cd tools” exited with 0.

$ ant test

Buildfile: /home/travis/build/wyvernlang/wyvern/tools/build.xml

copper-compose -compile:
[mkdir] Created dir

/home/travis/build/wyvernlang /wyvern/tools/copper-composer/bin

ncludeantruntime’

yvernlang/wyvern/tools/build.xml:18: warning:

[Javac] /home/travis/buils
ast; set to false for repeatable builds

was not set, defaulting to build.sysclasspatl

UNIT TEST, INTEGRATION TESTS, SYSTEM TESTS

y

Unit testing Integration testing System testing Acceptance
testing

(Demonstration)

Speaker notes
Software is developed in units that are later assembled. Accordingly we can distinguish different levels of testing.

Unit Testing - A unit is the "smallest" piece of software that a developer creates. It is typically the work of one
programmer and is stored in a single file. Different programming languages have different units: In C++ and Java the
unit is the class; in C the unit is the function; in less structured languages like Basic and COBOL the unit may be the
entire program.

Integration Testing - In integration we assemble units together into subsystems and finally into systems. It is possible for
units to function perfectly in isolation but to fail when integrated. For example because they share an area of the
computer memory or because the order of invocation of the different methods is not the one anticipated by the different
programmers or because there is a mismatch in the data types. Etc.

System Testing - A system consists of all of the software (and possibly hardware, user manuals, training materials, etc.)
that make up the product delivered to the customer. System testing focuses on defects that arise at this highest level of
integration. Typically system testing includes many types of testing: functionality, usability, security, internationalization
and localization, reliability and availability, capacity, performance, backup and recovery, portability, and many more.

Acceptance Testing - Acceptance testing is defined as that testing, which when completed successfully, will result in the
customer accepting the software and giving us their money. From the customer's point of view, they would generally like
the most exhaustive acceptance testing possible (equivalent to the level of system testing). From the vendor's point of
view, we would generally like the minimum level of testing possible that would result in money changing hands. Typical
strategic questions that should be addressed before acceptance testing are: Who defines the level of the acceptance
testing? Who creates the test scripts? Who executes the tests? What is the pass/fail criteria for the acceptance test?
When and how do we get paid?

ANATOMY OF A UNIT TEST

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class AdjacencylListTest {
public void testSanityTest()({
Graph g1 = new AdjacencylListGraph(10);

Vertex si1 new Vertex("A");
Vertex s2 new Vertex('"B");

assertEquals(true, gl.addVertex(sl));
assertEquals(true, gl.addVertex(s2));
assertEquals(true, gl.addkEdge(sl, s2)),
assertEquals(s2, gl.getNeighbors(s1)[0]);

INGREDIENTS TO A TEST

e Specification

e Controlled environment
e Testinputs (calls and parameters)
e Expected outputs/behavior (oracle)

UNIT TESTING PITFALLS

e Working code, failing tests
Smoke tests pass

Works on my (some) machine(s)
Tests break frequently

How to avoid?

HOW TO UNIT TEST COMPONENT WITH
DEPENDENCY ON OTHER CODE?

EXAMPLE: TESTING PARTS OF A SYSTEM

Client —» Code —®| Backend

Model learn() {
Stream stream = openKafkaStream(...)
DataTable output = getData(testStream,

new DefaultCleaner());
return Model.learn(output);

EXAMPLE: USING TEST DATA

Test driver

—

Code —» Backend

DataTable getData(Stream stream, DataCleaner cleaner) { ... }

void test() {

Stream stream = openKafkaStream(...)
DataTable output = getData(testStream,

assert(output.length==10)

new DefaultCleaner());

EXAMPLE: USING TEST DATA

Test driver ——® Code —® Backend Interface ——®{ Mock Backend

DataTable getData(Stream stream, DataCleaner cleaner) { ... }
void test() {

Stream testStream = new Stream() {
int idx =

String[] data = [...]
public void connect() {
)

public String getNext(
return data[++1idx]

i3
DataTable output = getData(testStream,

new DefaultCleaner());
assert(output.length==10)

.10

EXAMPLE: MOCKING A DATACLEANER OBJECT

DataTable getData(KafkaStream stream, DataCleaner cleaner){...}

void test() {
DataCleaner dummyCleaner = new DataCleaner() {
boolean isVvalid(String row) { return true; }

¥
DataTable output = getData(testStream, dummyCleaner);

assert(output.length==10)

.11

EXAMPLE: MOCKING A DATACLEANER OBJECT

DataTable getData(KafkaStream stream, DataCleaner cleaner){...}

void test() {
DataCleaner dummyCleaner = new DataCleaner() {
int counter = 0;
boolean isValid(String row) {
counter++;
return counter!=3;

¥
DataTable output = getData(testStream, dummyCleaner);

assert(output.length==9)

Mocking frameworks provide infrastructure for expressing such tests compactly.

.12

Client

Test driver

Code

_—

Backend

Backend Interface

\> Mock Backend

.13

SUBTLE BUGS IN DATA WRANGLING CODE

df['Join_year'] = df.Joined.dropna().map(
lambda x: x.split(', '")[1].split(' ")[1])

df.loc[idx_nan_age, 'Age'].loc[idx_nan_age] =
df['Title'].loc[1idx_nan_age].map(map_means)

df["wWeight"].astype(str).astype(int)
df['"Reviws'] = df['Reviews'].apply(int)

df["Release Clause"] =
df["Release Clause'"].replace(regex=['k'], value='000")

df["Release Clause"] =
df["Release Clause"].astype(str).astype(float)

Speaker notes

1 attempting to remove na values from column, not table

2 loc[] called twice, resulting in assignment to temporary column only
3 astype() is not an in-place operation

4 typo in column name

5&6 modeling problem (k vs K)

TESTS FOR DATA WRANGING CODE?

(data quality checks, data cleaning, feature engineering, ..

)

.15

MODULARIZING AND TESTING DATA CLEANING

def is_valid_row(row):
try:
datetime.strptime(row['date'], '%b %d %Y')
return true
except ValueError:
return false

clean_row(row):

test_dates(self):

self.assertTrue(is_valid_row(...))
self.assertTrue(is_valid_row(...))
self.assertFalse(is_valid_row(...)

)

test_date_cleaning(self):
self.assertEquals(clean_row(...),

MODULARIZE AND TEST FEATURE ENCODING

def encode_date(df):
df .date_time = pd.to_datetime(df.date_time)
def encode_day_part(df):
def daypart(hour):
if hour 1in [2,3,4,5]:
return "dawn"
elif hour in [6,7,8,9]:
return "morning"
elif hour in [10,11,12,13]:
return "noon"

elif ...

raw_dayparts = df.date_time.dt.hour.apply(daypart)
return pd.get_dummies(raw_dayparts)

def test_day_part(self):

TEST ERROR HANDLING

void test() {
DataTable data = new DataTable();

try {

Model m = learn(data);
Assert.fail();
} catch (NoDataException e) {

.18

Speaker notes

Code to test that the right exception is thrown

TESTING FOR ROBUSTNESS

manipulating the (controlled) environment: injecting errors into backend to test
error handling

DataTable getData(Stream stream, DataCleaner cleaner) {

void test() {
Stream testStream = new Stream() {

public String getNext() {
if (++idx == 3) throw new IOException();
return data[++idx];

}

¥
DataTable output = retry(getData(testStream, ...));

assert(output.length==10)

.19

TEST LOCAL ERROR HANDLING (MODULAR
PROTECTION)

void test() {
Stream testStream = new Stream() {
int idx = 0;
public void connect() {
if (++1idx < 3) throw new IOException(
"cannot establish connection™)

b
public String getNext() { ... }

}

DataLoader loader = new DatalLoader(testStream,
new DefaultCleaner());
ModelBuilder model = new ModelBuilder(loader, ...);

assert(model.accuracy > .91)

.20

Speaker notes

Test that errors are correctly handled within a module and do not leak

Packages T Coverage Report - All Packages

All

et sourceforge.cobertura.ant g SEwases i Dwernge B ETape Eomplexty
B ———— All Packages 55 T ey 2319
net.sourceforge cobertura.check

net.sourceforge. cobertura. coveragedal B — - f— _ a5 _ 1848
net.sourceforge cobertura. instrument net.sourceforge.cobertura. chieck g e _ ™ _ 2.429
net.sourceforge. cobertura. mer net.sourceforge cobertura coveragedata 13 HIA HiA 2.277
net sourceforge. cobertura.reporting net sourceforge. cobertura insirument 10 E - | = | azsnes [1.854
net sourceforge. cobertura. reporting. htr net sourceforge.cobertura merge - o _ o _ 55
net.snuroefnrgg.mbenura.remnim.htrl net.sourceforge cobertura reporting 3 T _ o _ 2.6682
net.sourceforge cobertura, reporting xm net sourceforge. cobertura.reporting himl 4 =1 [T 7 [4.444
net.sourceforge. cobertura, util " net.sourceforge.cobertura.reporting himi files - s7e [e2v [45

u . net sourceforge. cobertura reporting xml 1 1009 _ 5% _ 1524
¢ l— — net sourceforge cobertura, uti 9 s [| 2,892
All Packages ~ || somectherpackage - e [N WA 12
] Report generated by Cobertura 1.9 on 6/%/07 12:37 AM.

Classes

AntUtil (88%)

Archive (100%)

ArchiveUtil (B0%;)

BranchCoverageData (N/A)

CheckTask (0%)

ClassData (N/4)

Classlnstrumenter ($4%)

ClassPattern (100%)

CoberturaFile (73%)

CommandLineBuilder (96%)

CommonMatehingTask (88%)

ComplexityCalculator {100%)

ConfiqurationUtil (50%) j

CopyFiles (87%)

CoverageData (N/A)
CoverageDataContainer (N/A)
CoverageDataFileHandler (N/A)
CoverageRate (0%)

ExcludeClasses (100%)

EileFinder (96%)

EileLocker (0%
EirstPassMethodinstrumenter {100%)
HTMLReport (94%)
HasBeenlnstrumented (NAA)

Header (80%)

1OUtil (62%)

lgnore (100%)

lgnoreBranches (0%) -

1

4.

21

TESTABLE CODE

Think about testing when writing code

Unit testing encourages you to write testable code

Separate parts of the code to make them independently testable
Abstract functionality behind interface, make it replaceable

Test-Driven Development: A design and development method in which you
write tests before you write the code

INTEGRATION AND SYSTEM TESTS

y

Unit testing

Integration testing

System testing

Acceptance
testing

(Demonstration)

4.

23

INTEGRATION AND SYSTEM TESTS

Test larger units of behavior
Often based on use cases or user stories -- customer perspective

void gameTest() {
Poker game = new Poker();
Player p = new Player();
Player q = new Player();
game.shuffle(seed)
game.add(p);
game.add(q);

game.deal();

p.bet(100);

q.bet(100);

p.call();

q.fold();
assert(game.winner() == p);

.24

INTEGRATION AND SYSTEM TESTS

Test larger units of behavior
Often based on use cases or user stories -- customer perspective

vold testCleaningwWithFeatureEng() {
DataFrame d = loadTestData();
DataFrame cd = clean(d);
DataFrame f = feature3.encode(cd);

assert(noMissingValues(f.getColumn("m")));
assert(max(f.getColumn("m"))<=1.0);

.25

BUILD SYSTEMS & CONTINUOUS INTEGRATION

e Automate all build, analysis, test, and deployment steps from a command
line call

e Ensure all dependencies and configurations are defined

e |deally reproducible and incremental

e Distribute work for large jobs

e Track results

e Key Cl benefit: Tests are regularly executed, part of process

< Ch

s

% Build #17 - wyvernlz: x |

& https:

travis-ci.org/wy

Help

wyvernlang / wyvern

-

rernlang/

O oo

Build #17

SimpleWyvern-devel Asserting false (works on Linux, soits C

X= Remove Log 4= Download Log

Using worker: worker-linux-827f8498-1.bb.travis-ci.org:travis-linux-2

Build system information

$ git clone --depth=58 --branch=5impleWyvern-devel
§ jdk_switcher use oraclejdk8
Switching to Oracle JDK8 (java-8-oracle), JAVA_HOME will be set to fusr/lib/jvm/java-8-oracle

§ java -Xmx32m -wversion

java version "1.8.8_31"

Java(TM) SE Runtime Enviromment (build 1.8.8_31-bl3)

Java HotSpot(TM) 64-Bit Server VM (build 25.31-b@7, mixed mode)

§ javac -J-Xmx32m -version

javac 1.8.8_31
$ cd tools

The command "cd tools™ exited with 8.
§ ant test
Buildfile: /home/travis/build/wyvernlang/wyvern/tools/build.xml

copper-compose-compile:
[mkdir] Created dir: /home/travis/build/wyvernlang/wyvern/tools/copper-composer/bin
[javac] fhome/travis/build/wyvernlang/wyvern/tools/build.xml:18: warning: "includeamtruntime’

was not set, defaulting to build.sysclasspath=last; set to false for repeatable builds

TRACKING BUILD QUALITY

Track quality indicators over time, e.g.,

e Build time

* Test coverage

e Static analysis warnings

e Performance results

e Model quality measures

e Number of TODOs in source code

II!!i!:!!!!:!!!!!!!!EIIﬂ!!I!!!!!!!IIIIIIIIIIIlllllllllllllllllg!IIII

Jenkins Suisse Stop-tabac dev EMABLE AUTO REFRESH

4% Back to Dashbeard

Project Stop-tabac dev
O status

CT build
ﬁ Changes
ﬁ Workspace Disable Project
Test Result Trend
@ Build Maow 140
Coverage Report
@ Delete Project 120
:’{ Configure m
=R
B Set Next Build Number 3
Y 6D
¢4 Duplicate Code = |
‘li Recent Changes 40
5 Coverage Report E— 20
o
E_a ﬂ SLocCount Latest Test Result (no failures) - = Iy
i % g
Git Palling Log))
D e (just show failures) enlarge
Build Histo pe— Permalinks Code Coverage
5% Build History L Classes 45% Conditionals 74% Files 45% Lines 28% Packages 88%
@ #977 Aug 27, 2012 4:37:37 PM » Last build (#977), 3 min 17 sec ago 100 A
Last stable build {(#577), 3 min 17 sec ago 90 / \
@ #438 Jun 28, 2012 8:47:42 AM [E] » Last successful build (#577), 3 min 17 sec ago 80 | - ,/
#426 Jun 26,2012 1:39:39 PM 70 <
@ un @ &0 r ~ — Classes
@ #345 Jun 19, 2012 5:02:20 AM [S 7 — Conditionals
@ #263 Jun6, 2013 9:14:42pPM [&] 40 // // ~— Files
@ #210 May 31, 2012 £:42:29 aM [&] i Yy Lines
= M H H
20 P —— ~— Packages
@ #171 May 23, 2012 9:58:18 PM [10 1Ry 4
@ #90 May 15, 2012 11:49:41 AM [E] D: E T o a] ~
& E k> % 3 i E
EJ RSS for all] RSS for failures

SLOCCount Trend

#210
#2063
#426
#438
#3977

—
P
—
3*

https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/

E Help us localize this page Page generated: Aug 27, 2012 4:40:45 PM

Jenkins ver. 1.470

Source: https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/

.29

https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/
https://blog.octo.com/en/jenkins-quality-dashboard-ios-development/

TRACKING MODEL QUALITIES

Many tools: MLFlow, ModelDB, Neptune, TensorBoard, Weights & Biases,
Comet.ml, ...

Github Docs
Listing Price Prediction
Experiment ID: 0 Artifact Location: /Users/matei/mlflow/demo/mliruns/0
Search Runs: metrics.R2 > 0.24
Filter Params: Filter Metrics: Clear
4 matching runs Download CSV &,
Parameters Metrics

Time User Source Version alpha 11_ratio MAE R2 RMSE

17:37 matei linear.py 3a1995 0.5 0.2 84.27 0.277 158.1

17:37 matei linear.py 3a1995 0.2 0.5 84.08 0.264 159.6

17:37 matei linear.py 3a1995 0.5 0.5 84.12 0.272 158.6

17:37 matei linear.py 3a1995 0 0 84.49 0.249 161.2

MODELDB EXAMPLE

from verta import Client
client = Client("http://localhost:3000")

proj
expt

client.set_project("My first ModelDB project")
client.set_experiment("Default Experiment")

run = client.set_experiment_run("First Run")

run.log_hyperparameters({'"regularization” : 0.5})
modell =

run.log_metric('accuracy', accuracy(modell, validationData))

4.31

TEST MONITORING

* |nject/simulate faulty behavior
e Mock out notification service used by monitoring
e Assert notification

class MyNotificationService extends NotificationService {
public boolean receivedNotification = false;
public void sendNotification(String msg) {
receivedNotification = true; }

void test() {
Server s = getServer();

MyNotificationService n = new MyNotificationService();
Monitor m = new Monitor(s, n);

s.stop();

s.request(); s.request();

wait();

assert(n.receivedNotification);

4.32

TEST MONITORING IN PRODUCTION

e Like fire drills (manual tests may be okay!)
e Manual tests in production, repeat regularly
e Actually take down service or trigger wrong signal to monitor

CHAOS TESTING

http://principlesofchaos.org

4.34

http://principlesofchaos.org/

Speaker notes

Chaos Engineering is the discipline of experimenting on a distributed system in order to build confidence in the system’s
capability to withstand turbulent conditions in production. Pioneered at Netflix

CHAOS TESTING ARGUMENT

Distributed systems are simply too complex to comprehensively predict

-> experiment on our systems to learn how they will behave in the presence
of faults

Base corrective actions on experimental results because they reflect real
risks and actual events

Experimentation != testing -- Observe behavior rather then expect specific
results

Simulate real-world problem in production (e.g., take down server, inject
latency)

Minimize blast radius: Contain experiment scope

NETFLIX'S SIMIAN ARMY

Chaos Monkey: randomly disable production instances
Latency Monkey: induces artificial delays in our RESTful client-server communication layer
Conformity Monkey: finds instances that don’t adhere to best-practices and shuts them down
Doctor Monkey: monitors other external signs of health to detect unhealthy instances
Janitor Monkey: ensures that our cloud environment is running free of clutter and waste

Security Monkey: finds security violations or vulnerabilities, and terminates the offending
instances

10-18 Monkey: detects problems in instances serving customers in multiple geographic regions

Chaos Gorilla is similar to Chaos Monkey, but simulates an outage of an entire Amazon
availability zone.

CHAOS TOOLKIT

e |nfrastructure for chaos experiments
e Driver for various infrastructure and failure cases
e Domain specific language for experiment definitions

"version": "1.0.0",
"title": "What is the impact of an expired certificate on ou
"description": "If a certificate expires, we should graceful
”tagS”: [”tlS”],
"steady-state-hypothesis": {

"title": "Application responds",

"probes": [

{

lltypell: llprobell’
"name": "the-astre-service-must-be-running",
"tolerance": true,
"provider": {
|ltype|l: |lpythonll’
"module": "os.path",

http://principlesofchaos.org, https://github.com/chaostoolkit, https://github.com/Netflix/SimianArmy

http://principlesofchaos.org/
https://github.com/chaostoolkit
https://github.com/Netflix/SimianArmy

CHAOS EXPERIMENTS FOR ML INFRASTRUCTURE?

4.38

Speaker notes

Fault injection in production for testing in production. Requires monitoring and explicit experiments.

CODE REVIEW AND STATIC
ANALYSIS

CODE REVIEW

e Manual inspection of code
= Looking for problems and possible improvements
= Possibly following checklists
= |ndividually or as group
e Modern code review: Incremental review at checking
= Review individual changes before merging
= Pull requests on GitHub
= Not very effective at finding bugs, but many other benefits:
knowledge transfer, code imporvement, shared code ownership,
Improving testing

- a.mmi?qn O WO =

C itHub, Inc. USL|https //github.com/ckaestne/TypeChef/pull/28

GitHub This repository Search Explore Features Enterprise Blog ﬁ Sign in]

ckaestne / TypeChef 4 Star 20 YFork 12

Refactorings #28 ;

joliebig merged 17 commits It 1iveness from caiierapn 9 months ago

o® Conversation 3 -0 Commits 17 E] Files changed a7 1,149 —10,129 EEEE |
. ckaestne commented on Jan 29 Owner Labels i~

Mone yet

@joliebig faly =

Please have a look whether you agree with these refactonngs in CRewrite Milestone

key changes: Moved ASTNavigation and related classes and tumed EnforceTreeHelper into an object Mo miiestone
Assignee

Iy ckaestne added some commits on Jan 29 . ;

o one assigned

[l revove obsolete test cases
. refactering: move AST helper classes to CRewrite package where it is .. ==

[l imerove readability of test code .'
[revoved unused fields

- ckaestne commented on Jan 29 Cruner

Can one of the admins verify this patch?

2 participants

!ﬂ ckaestne added some commits on Jan 29

. imtreduce option for call graph in addition to CFG (no implementationm. ==
-

SUBTLE BUGS IN DATA WRANGLING CODE

df['Join_year'] = df.Joined.dropna().map(
lambda x: x.split(', ')[1].split(" '")[1])

df.loc[idx_nan_age, 'Age'].loc[idx_nan_age] =
df['Title'].loc[1idx_nan_age].map(map_means)

df["wWeight"].astype(str).astype(int)
df['"Reviws'] = df['Reviews'].apply(int)

df["Release Clause"] =
df["Release Clause'"].replace(regex=['k'], value='000")

df["Release Clause"] =
df["Release Clause"].astype(str).astype(float)

Speaker notes

1 attempting to remove na values from column, not table

2 loc[] called twice, resulting in assignment to temporary column only
3 astype() is not an in-place operation

4 typo in column name

5&6 modeling problem (k vs K)

STATIC ANALYSIS, CODE LINTING

Automatic detection of problematic patterns based on code structure

if (user.jobTitle = "manager") {

}

function fn() {
X = 1;
return x;
X = 3;

PrintWriter log = null;
if (anyLogging) log = new PrintWriter(...);
if (detailedLogging) log.println("Log started");

PROCESS INTEGRATION: STATIC ANALYSIS
WARNINGS DURING CODE REVIEW

package com.google.devtools.staticanalysis;

public class Test {

~ Lint Missing a Javadoc comment.
1:02 AM Aug 21

Please fix Not useful

public boolean foo() {
return getString() == "foo".toString();

« ErrorProne String comparison using reference equality instead of value equality

StringEquality (see htip://code.google.com/p/error-prone/wiki/StringEquality)

1:03 AM, Aug 21
Please fix
Suggested fix attached: show Not useful

}

public String getString() {
return new String(“"foo"):

}
}

Sadowski, Caitlin, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. "Lessons from building
static analysis tools at google." Communications of the ACM 61, no. 4 (2018): 58-66.

Speaker notes

Social engineering to force developers to pay attention. Also possible with integration in pull requests on GitHub.

INFRASTRUCTURE TESTING

Eric Breck, Shanging Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

Data Tests

Code

=

ML Infrastructure
Tests

Model

Tests

Model
Training

B |nit Tests B Integration
Tests

Skew Tests

= Running
System

Data
Monitoring

Prediction
Monitoring

System
Monitoring

Source: Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML
Production Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

DATA TESTS

1. Feature expectations are captured in a schema.

2. All features are beneficial.

3. No feature’s cost is too much.

4. Features adhere to meta-level requirements.

5. The data pipeline has appropriate privacy controls.
6. New features can be added quickly.

7. All input feature code is tested.

Eric Breck, Shanging Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

TESTS FOR MODEL DEVELOPMENT

1. Model specs are reviewed and submitted.

2. Offline and online metrics correlate.

3. All hyperparameters have been tuned.

4, The impact of model staleness is known.

5. Asimpler model is not better.

6. Model quality is sufficient on important data slices.
7. The model is tested for considerations of inclusion.

Eric Breck, Shanging Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

ML INFRASTRUCTURE TESTS

1. Training is reproducible.

2. Model specs are unit tested.

3. The ML pipeline is Integration tested.

4, Model quality is validated before serving.
5. The model is debuggable.

6. Models are canaried before serving.

7. Serving models can be rolled back.

Eric Breck, Shanging Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

MONITORING TESTS

1. Dependency changes result in notification.
2. Data invariants hold for inputs.

3. Training and serving are not skewed.

4. Models are not too stale.

5. Models are numerically stable.

6. Computing performance has not regressed.
7. Prediction quality has not regressed.

Eric Breck, Shanging Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML Test Score: A Rubric for ML Production
Readiness and Technical Debt Reduction. Proceedings of IEEE Big Data (2017)

https://research.google.com/pubs/archive/46555.pdf

CASE STUDY: SMART PHONE COVID-19 DETECTION

(from midterm; assume cloud or hybrid deployment)

https://www.youtube.com/watch?v=e62ZL3dCQWM

BREAKOUT GROUPS

In the Smartphone Covid Detection scenario
Discuss in groups:
= Back left: data tests
= Back right: model dev. tests
= Front right: infrastructure tests
= Front left: monitoring tests
For 8 min, discuss some of the listed point in the context of the Covid-
detection scenario: what would you do?
In slack #1lecture suggest what tests to implement

DEV VS. OPS

SUNORKEDFINETNN
-ub&nw TN

. ‘ .
OPS PROBLEMNOW

COMMON RELEASE PROBLEMS?

COMMON RELEASE PROBLEMS (EXAMPLES)

e Missing dependencies

e Different compiler versions or library versions

e Different local utilities (e.g. unix grep vs mac grep)
e Database problems

e OS differences

e Too slow in real settings

e Difficult to roll back changes

e Source from many different repositories

e Obscure hardware? Cloud? Enough memory?

OPERATIONS

DEVELOPERS e Allocating hardware resources
e Managing OS updates

Coding e Monitoring performance
Testing, static analysis, reviews e Monitoring crashes
Continuous integration e Managing load spikes, ...
Bug tracking e Tuning database performance
Running local tests and scalability e Running distributed at scale
experiments e Rolling back releases

QA responsibilities in both roles

QUALITY ASSURANCE DOES NOT STOP IN DEV

Ensuring product builds correctly (e.g., reproducible builds)

Ensuring scalability under real-world loads

Supporting environment constraints from real systems (hardware, software,
0S)

Efficiency with given infrastructure

Monitoring (server, database, Dr. Watson, etc)

Bottlenecks, crash-prone components, ... (possibly thousands of crash
reports per day/minute)

KEY IDEAS AND PRINCIPLES

Better coordinate between developers and operations (collaborative)
Key goal: Reduce friction bringing changes from development into
production

Considering the entire tool chain into production (holistic)
Documentation and versioning of all dependencies and configurations
("configuration as code")

Heavy automation, e.g., continuous delivery, monitoring

Small iterations, incremental and continuous releases

Buzz word!

COMMON PRACTICES

All configurations in version control

Test and deploy in containers

Automated testing, testing, testing, ...

Monitoring, orchestration, and automated actions in practice
Microservice architectures

Release frequently

HEAVY TOOLING AND AUTOMATION

~ Application Lifecycle Mgmt. — ~SCM/VCS ~Testing ~Deployment —————— Cloud / laaS / PaaS 5

. ‘ heroku
¥JIRA [dmingle @relo glt w @ ”OCtopus Deploy (xL) DepLOY ~---s;g'g, ",',‘ﬁ - @
e e || ZRN0EK C D

mercurial
Team Foundation Server PivotalTracker G @ Gltl"ll.lb GAUNTLT OWASP N NOLIO L mm
& Basecamp fozana | efitbucket g ﬁ@ Batling zar || e JUJU) B ovensuoc & O e
s 2 ©GitBucket /L0 L.) 7 ElasticBox Sprmaler 3 DEIS 2P pensrrr LUK
nit
~ Communication & ChatOps rCl ” “\KA RMA r~ Config Mgmt. /Provisioning ~Orchestration & Scheduling
. - H g) wercker sna ;
% slack QHipchat #irc I T@ i @«) . P || @FitNesse E. ﬁ\ z O PERHESDSRUERE o
® TeamCity Jenkins .
oy 1 labs -
RYWERE @ mactermost J+Bamboo @ Qyn!gf CFEngine SWAR) kubernetes
@ pes '] 3 CIrCIe'CI Travis CI b @ m SALTSTACK ..‘ PowerShell DSC - c. Nomad
*ﬁb COG > go - shENmler VAGRANT ‘ RANCHER 2% \es0s
r Nestor lllA CODESHIP v TERRAFORM Hsv‘
~Knowledge Sharingi ~Build % & (2 Galen Pramuvork —Artefact Management ———— ~ Bl / Monitoring / Logging
r 8 GRUNT = :
. sbt radle UAY || = logstash &= elasticsearch a
ithub: >4 cé{lz’ ‘ sl - Maven _[@ LoADIMPACT COQ 2 SP"-'"k/ Vectér ‘ kibana
g oo Wi g\ T | /ibreter . » ‘%
& # = ' =
@ X Confluence G¥nant ‘/ sk~ ' |T =BlazeMeter DockerHuB ‘0, GREK Z!PKIN |Goog|eAna\y(ics x-pack
- 3 skEacHE o REWGJST!RY Sl &\ SENTRY " . h
Mark 5 Read the Docs _ MSBuild pytest o e O New Relic. W:C!ALQ romelhieus 2

® PINPOINT Ocynatrace

down v
°)) Leiningen Rake Frog Artifact) Lo @
&, 2piblueprint [R3L ﬁ o l. Browsersync O_ Fagrclmny pgtfg‘%g ORunscope sensu o (AN

-Database Management) QO APInetrics 5Grafana g

\ ~ 8% , Pall qraphite B

e) FOPNE ||) pBacaio osoeper “g‘;& specﬂc?nf ' Sl * Pd-vcunsmsll :
\"‘/. - - Flyway & I Sonatype Airbrake.io oibar g

araphviz Flocker s =3

i = Newman xUnIt net al'Chlva N X pagerduty 00
Discourse greddi? 5] redgate LIQUIsBASE (npm| exus o ,i ek iceni |

http://localhost:1948/devops_tools.jpg

HEAVY TOOLING AND AUTOMATION -- EXAMPLES

e |nfrastructure as code — Ansible, Terraform, Puppet, Chef

e CI/CD — Jenkins, TeamCity, GitLab, Shippable, Bamboo, Azure DevOps
e Test automation — Selenium, Cucumber, Apache JMeter

e Containerization — Docker, Rocket, Unik

e Orchestration — Kubernetes, Swarm, Mesos

e Software deployment — Elastic Beanstalk, Octopus, Vamp

e Measurement — Datadog, DynaTrace, Kibana, NewRelic, ServiceNow

CONTINUOUS DELIVERY

MANUAL RELEASE PIPELINES

Enai Value = X days "
C:gn'r:l't: Total Time = X+Y days = Z% Efficient Production
Hourly Build Nightly Build Accept. Test Manual Test Release
How long does a
Automated Automated/Manual?
Value 1 hour 2 hours 5 hours 2 days 1 min 1 hour

Waste 15 hours 1 day 6 days 1.5 days 4 days 4 days

https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-beyond

Source: https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-
beyond

https://www.slideshare.net/jmcgarr/continuous-delivery-at-netflix-and-beyond

CONTINUOUS DELIVERY

e Full automation from commit to
deployable container

e Heavy focus on testing,
reproducibility and rapid feedback

e Deployment step itself is manual

e Makes process transparent to all
developers and operators

CONTINUOUS
DEPLOYMENT

Full automation from commit to
deployment

Empower developers, quick to
production

Encourage experimentation and
fastincremental changes
Commonly integrated with
monitoring and canary releases

AUTOMATE EVERYTHING

Continuous Delivery

Unit Test Platform Test Deliver to Application Deploy to Post
Staging Acceptance tests Production deploy tests

Continuous Deployment

Unit Test Platform Test Deliver to Application Deploy to Post
Staging Acceptance tests Production deploy tests

FACEBOOK TESTS FOR MOBILE APPS

e Unit tests (white box)

e Static analysis (null pointer warnings, memory leaks, ...)
e Build tests (compilation succeeds)

e Snapshot tests (screenshot comparison, pixel by pixel)
e Integration tests (black box, in simulators)

e Performance tests (resource usage)

e Capacity and conformance tests (custom)

Further readings: Rossi, Chuck, Elisa Shibley, Shi Su, Kent Beck, Tony Savor, and Michael Stumm. Continuous
deployment of mobile software at facebook (showcase). In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 12-23. ACM, 2016.

https://research.fb.com/wp-content/uploads/2017/02/fse-rossi.pdf

RELEASE CHALLENGES FOR MOBILE APPS

e Large downloads

e Download time at user discretion
e Different versions in production
e Pull support for old releases?

e Server side releases silent and quick, consistent

e -> App as container, most content + layout from server

REAL-WORLD PIPELINES ARE COMPLEX

L e

Misc automation
tools driving

Mise Web Ul:
Col

config changes Gatekeeper,
tevar query
—~ canary
g status
g
Z
<
<= Mutator
g
g
query dependeney 5 | & checkout
E) T
Development Y
Server L
git checkout .
temporarily
publish diff for deploy
code review a config
; = for canary
Landing Strip {esting
Phabricator
g (for code ;
review) Master

post testing results Repository

Sandeastle
(continuous

Follower | { Follower | (Follower
o AN S/ \ /

v

{ Follower
N J

Multiple Observ

Each Cluster

Observer |

Production Server

(‘Product X) Product Y) Product .)
\ / AN /

HHVM (PHP VM)

{ Application B <

http://localhost:1948/facebookpipeline.png

CONTAINERS AND
CONFIGURATION
MANAGEMENT

CONTAINERS

Lightweight virtual machine
Contains entire runnable software,
incl. all dependencies and
configurations

Used in development and
production

Sub-second launch time

Explicit control over shared disks
and network connections

docker

10.

2

DOCKER EXAMPLE

FROM ubuntu:latest

MAINTAINER ...

RUN apt-get update -y

RUN apt-get install -y python-pip python-dev build-essential
COPY . /app

WORKDIR /app
RUN pip install -r requirements.txt
ENTRYPOINT ["python"]

CMD ["app.py"]

Source: http://containertutorials.com/docker-compose/flask-simple-app.html

10.

3

http://containertutorials.com/docker-compose/flask-simple-app.html

COMMON CONFIGURATION MANAGEMENT
QUESTIONS

What runs where?

e How are machines connected?

What (environment) parameters does software X require?
e How to update dependency X everywhere?

How to scale service X?

ANSIBLE EXAMPLES

e Software provisioning, configuration management, and application-
deployment tool
e Apply scripts to many servers

- name: create data directory for mongodb
file: path={{ mongodb_datadir_prefix }}/mon
delegate_to: '{{ item }}°’
with_items: groups.replication_servers

[webservers]

webl.company.org
web2.company.org
web3.company.org
name: create log directory for mongodb

file: path=/var/log/mongo state=directory o

[dbservers]
dbl.company.org
db2.company.org name: Create the mongodb startup file
template: src=mongod.j2 dest=/etc/init.d/mo
delegate_to: '{{ item }}'

with_items: groups.replication_servers

[replication_server

10.5

PUPPET EXAMPLE

Declarative specification, can be applied to many machines

$doc_root = "/var/www/example"

exec { 'apt-get update':
command => '/usr/bin/apt-get update'’
¥

package { 'apache2':
ensure => "installed",
require => Exec['apt-get update']

}

file { $doc_root:
ensure => "directory",
owner => "www-data'",
group => "www-data",

10.

6

Speaker notes

source: https://www.digitalocean.com/community/tutorials/configuration-management-101-writing-puppet-manifests

https://www.digitalocean.com/community/tutorials/configuration-management-101-writing-puppet-manifests

CONTAINER ORCHESTRATION WITH KUBERNETES

e Manages which container to deploy to which machine
e Launches and kills containers depending on load

e Manage updates and routing

e Automated restart, replacement, replication, scaling
e Kubernetis master controls many nodes

Kubernetes Master

Controller Manager)

APl Server
Scheduler)

Developer
/ Operator

Users

|

Kubelet (CAdvisor Kube Proxy] Kubelet (cAdvisor] (Kube-Proxy]

4 Plugin Network (eg Flannel, Weavenet, etc) >

Kubernetes Node Kubernetes Node

https://en.wikipedia.org/wiki/Kubernetes#/media/File:Kubernetes.png

CC BY-SA 4.0 Khtan66

10.

https://en.wikipedia.org/wiki/Kubernetes#/media/File:Kubernetes.png

MONITORING

Monitor server health

Monitor service health

Monitor telemetry (see past lecture)

Collect and analyze measures or log files
Dashboards and triggering automated decisions

Many tools, e.g., Grafana as dashboard, Prometheus for metrics, Loki +
ElasticSearch for logs
Push and pull models

HAWKULAR

& Hawkular APM X

< C | @ localhost ¥ E

HAWKULAR APPLICATION PERFORMANCE MANAGEMENT

Components Distributed Tra

<
Filter by Aggregation Interval: | 10 Second v |t Overlap Data Last Update: 12 Oct 2016 14:35:32 Il Pause Live Data
Time Span 8
g
10 Minutes v 0.0006 | 3
0.0005
~ Business Transaction
0.0004
w Al
2016-10-12 14:31:10
; 0.0003
List My Orders database 0.000014925
Place Order - -
0.0002 R R nsumer 0.000111111
. P . A . O Va Producer 0.000131147
“ Properties 00001 — v \
MName v a \J\M«\A R S
2016-10-12 14:25:30 2016-10-12 14:26:50 2016-10-12 14:28:10 2016-10-12 14:29:30 2016-10-12 14:30:50 2016-10-12 14:32:10
M database Consumer M Producer
Text
Actual (secs) Elapsed (secs) Count Component URI Operation
~ Host Mame
_ 0.000 0.001 1320 consumer forders POST
— 0.000 0.001 140 consumer forders GET
. 0.000 0.000 1320 consumer GetAccount
I 0.000 0.000 1102 consumer Getltem
I 0.000 0.000 535 consumer StoreOrder
I 0.000 0.000 535 consumer UpdateQuantity
- 0.000 0.000 140 consumer GetOrders
I 0.000 0.000 1102 database InventoryDB Querylnventory
| 0.000 0.000 535 database InventoryDB Writelnventory
I 0.000 0.000 1320 database AccountsDB RetrieveAccount

https://www.hawkular.org/hawkular-apm/

N_Opsvl

MODEL
DENELOPMEANT

OPERATIONS

https://ml-ops.org/

https://ml-ops.org/

ON TERMINOLOGY

e Many vague buzzwords, often not clearly defined

e MLOps: Collaboration and communication between data scientists and
operators, e.g.,

= Automate model deployment

= Model training and versioning infrastructure

= Model deployment and monitoring
» AlOps: Using Al/ML to make operations decision, e.g. in a data center
e DataOps: Data analytics, often business setting and reporting

= |nfrastructure to collect data (ETL) and support reporting
= Monitor data analytics pipelines

= Combines agile, DevOps, Lean Manufacturing ideas

MLOPS OVERVIEW

Integrate ML artifacts into software release process, unify process
Automated data and model validation (continuous deployment)
Data engineering, data programming
Continuous deployment for ML models

= From experimenting in notebooks to quick feedback in production
Versioning of models and datasets
Monitoring in production

Further reading: MLOps principles

https://ml-ops.org/content/mlops-principles.html

TOOLING LANDSCAPE LF Al

Linux Foundation Al Landscape See the interactive landscape at |.Ifai.foundation

2020-06-30T02:16:48Z ebffcc5

Reinforcement Security &
Framework Platform Library Framework Platform Library Tool Programming Privatzy

Learning

‘GrestFlow

LFAI Incubating

Deep Learning

Reinforcement

Programming
Security & Privacy

Machine Learning

SQL Feature Visialeatan Pipeline Labeling and

Engine Engineering Management Annotation C°VerMance

Store & Format Operations Stream Processing

".*. MARQUEZ
@’ o
NNStreamer
Milvus

LFAI Incubating

Processing

(9]
o
©
=
=)
2.
©

Iy

©
o
=

o
©

=

Benchmarking Training Parameter Format Marketplace Inference Computing & Management Interface Notebook Environment

= <o @
& rcumos =HDLH £

LFAI Incubati LFAI Incubating LFAI Incubating

LFAI Graduated

LFAI Graduated

Distributed

Computing
Notebook
Environment

Bias &
Explainability Adversarial I Premier
Fairness

This landscape explores LF Al - " - @k,

open source artificial Landscape = AT&T Bai'cg'EE & A

intelligence, machine ERICSSON HﬁA\I\YEI & :11

learning, — and deep 1 LF Al insta -

learning projects, and L

lists the members of the
I.Ifai.foundationLF Al Foundation.

MAI=I EINvU

e e Tencent it Z TE - PSIT

@sucis

Trusted &

Responsible Al
LF Al Member
Company

oo | R

Linux Foundation Al Initiative

https://landscape.lfai.foundation/

11.

SUMMARY

Beyond model and data quality: Quality of the infrastructure matters,
danger of silent mistakes
Automate pipelines to foster evolution and experimentation
Move from experimentation to robust production infrastructure
Many SE techniques for test automation, testing robustness, test adequacy,
testing in production useful for infrastructure quality
DevOps: Development vs Operations challenges

= Automate everything: deployment, configuration, testing

= Telemetry and monitoring are key

= Many, many tools
MLOps: Automation around ML pipelines, incl. training, evaluation,
versioning, and deployment

FURTHER READINGS

O'Leary, Katie, and Makoto Uchida. "Common problems with Creating
Machine Learning Pipelines from Existing Code." Proc. Third Conference on
Machine Learning and Systems (MLSys) (2020).

Eric Breck, Shanging Cai, Eric Nielsen, Michael Salib, D. Sculley. The ML
Test Score: A Rubric for ML Production Readiness and Technical Debt
Reduction. Proceedings of IEEE Big Data (2017)
5=/ Zinkevich, Martin. Rules of Machine Learning: Best Practices for ML
Engineering. Google Blog Post, 2017

Serban, Alex, Koen van der Blom, Holger Hoos, and Joost Visser.
"Adoption and Effects of Software Engineering Best Practices in Machine
Learning." In Proc. ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (2020).
5| Larysa Visengeriyeva. Machine Learning Operations - A Reading List,
InnoQ 2020

12.

2

https://research.google/pubs/pub48984.pdf
https://developers.google.com/machine-learning/guides/rules-of-ml/
https://arxiv.org/pdf/2007.14130
https://ml-ops.org/content/references.html

