MANAGING AND
PROCESSING LARGE
DATASETS

Christian Kaestner

Required watching: Molham Aref. Business Systems with Machine Learning. Guest lecture, 2020.

Suggested reading: Martin Kleppmann. Designing Data-Intensive Applications. OReilly. 2017.

https://www.youtube.com/watch?v=_bvrzYOA8dY
https://dataintensive.net/

WHERE WE ARE

Fundamentals of Engineering Al-Enabled Systems

Holistic system view: Al and non-Al components, pipelines, stakeholders, environment interactions, feedback loops

Requirements:

System and model goals
User requirements
Environment assumptions
Quality beyond accuracy
Measurement

Risk analysis

Planning for mistakes

Architecture + design:
Modeling tradeoffs
Deployment architecture
Data science pipelines
Telemetry, monitoring
Anticipating evolution
Big data processing
Human-Al design

Quality assurance:
Model testing

Data quality

QA automation
Testing in production
Infrastructure quality
Debugging

Operations:
Continuous deployment
Contin. experimentation
Configuration mgmt.
Monitoring

Versioning

Big data

DevOps, MLOps

Teams and process: Data science vs software eng. workflows, interdisciplinary teams, collaboration points, technical debt

Responsible Al Engineering

Provenance,
versioning,
reproducibility

Safety

Security and
privacy

Fairness Interpretability

and explainability

Transparency
and trust

Ethics, governance, regulation, compliance, organizational culture

LEARNING GOALS

Organize different data management solutions and their tradeoffs
Understand the scalability challenges involved in large-scale machine
learning and specifically deep learning

Explain the tradeoffs between batch processing and stream processing and
the lambda architecture

Recommend and justify a design and corresponding technologies for a given
system

CASE STUDY

& Q trees X

Today v

Fri, Oct 25 v

Speaker notes

« Discuss possible architecture and when to predict (and update)
e in may 2017: 500M users, uploading 1.2billion photos per day (14k/sec)
e inJun 2019 1 billion users

ADDING CAPACITY

Stories of catastrophic success?

DATA MANAGEMENT AND
PROCESSING IN ML-
ENABLED SYSTEMS

KINDS OF DATA

e Training data
e |[nputdata

e Telemetry data
e (Models)

all potentially with huge total volumes and high throughput

need strategies for storage and processing

DATA MANAGEMENT AND PROCESSING IN ML-
ENABLED SYSTEMS

Store, clean, and update training data

e Learning process reads training data, writes model

e Prediction task (inference) on demand or precomputed
e Individual requests (low/high volume) or large datasets?

Often both learning and inference data heavy, high volume tasks

SCALING COMPUTATIONS

Efficent Algorithms Faster Machines More Machines

DISTRIBUTED X

Distributed data cleaning
Distributed feature extraction
Distributed learning

Distributed large prediction tasks
Incremental predictions
Distributed logging and telemetry

RELIABILITY AND SCALABILITY CHALLENGES IN Al-
ENABLED SYSTEMS?

DISTRIBUTED SYSTEMS AND AI-ENABLED SYSTEMS

e Learning tasks can take substantial resources

e Datasets too large to fit on single machine

e Nontrivial inference time, many many users

e Large amounts of telemetry

e Experimentation at scale

e Models in safety critical parts

e Mobile computing, edge computing, cyber-physical systems

REMINDER: T-SHAPED PEOPLE

]
"I-shaped” Generalist "T-shaped”
Expert at one thing Capable in a lot of things Capable in a lot of things
but not expert in any and expert in one of them

Go deeper with: Martin Kleppmann. Designing Data-Intensive Applications.
OReilly. 2017.

https://dataintensive.net/

EXCURSION: DISTRIBUTED
DEEP LEARNING WITH THE
PARAMETER SERVER
ARCHITECTURE

Li, Mu, et al. "Scaling distributed machine learning with the parameter server." OSDI, 2014.

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

RECALL: BACKPROPAGATION

outputs

output layer

hidden layer

input layer

TRAINING AT SCALE IS CHALLENGING

2012 at Google: 1TB-1PB of training data, 10° — 102 parameters

Need distributed training; learning is often a sequential problem

Just exchanging model parameters requires substantial network bandwidth
Fault tolerance essential (like batch processing), add/remove nodes
Tradeoff between convergence rate and system efficiency

Li, Mu, et al. "Scaling distributed machine learning with the parameter server." OSDI, 2014.

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

DISTRIBUTED GRADIENT DESCENT

(worker 1)
- 2. pushtxx_x x x |g1
servers
1. compute
| 91+ *9m | [xx x x x |wy
! — 4
3. update X x "
* XX X
| w 4. pull
4. pull

worker m)

[xx xxx x|y

A

1. compute
1

training W
data |XX X X X X | m

X

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

PARAMETER SERVER ARCHITECTURE

server server group a server
resource manager | n?de

manager/% O ;]

K
scl‘:zzuler—‘o O O

L1

—
aworker™ ______/)
node

training data

https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

Speaker notes

Multiple parameter servers that each only contain a subset of the parameters, and multiple workers that each require
only a subset of each

Ship only relevant subsets of mathematical vectors and matrices, batch communication
Resolve conflicts when multiple updates need to be integrated (sequential, eventually, bounded delay)

Run more than one learning algorithm simulaneously

SYSML CONFERENCE

Increasing interest in the systems aspects of machine learning
e.g., building large scale and robust learning infrastructure

https://mlsys.org/

https://mlsys.org/

DATA STORAGE BASICS

Relational vs document storage

e 1:nand n:m relations

e Storage and retrieval, indexes

e Query languages and optimization

RELATIONAL DATA MODELS

Photos:
photo_id user_id path upload_date size camera_id camera_setting
. 2021-12- £/1.8;1/120;
133422131 54351 t/u211/1U6UFl47Fy. 57 663
[S/u211/1UUFIATRY.IPE 3109.18:30.1247 4.44mm; 1S0271
. 2021-12- f/2,1/15,3.64mm,
133422132 13221 st/ullb/MFxIL1FY8V. 3.1 1844
[st/ullb/MFx P& 937109:18:32.1297 1501250
) 2021-12- £/1.8;1/120;
1334221 4351 1/ITzh . 4,
33422133 54351 [StIXBL/ITZRCSMVISIPE 2109.18:39 1317 8 063 4.44mm; 1S048
Users:
Cameras:
user_id account_name photos_total last_login
2021-12- camera_id manufacturer print_name
54351 ckaestne 5124 -
08T12:27:48.497Z 663 Google Google Pixel 5
2021-12- 1844 M M M
13221 eva.burk 3 0 8 otorola otorola MotoG3

21T01:51:54.7137Z

select p.photo_id, p.path, u.photos_total
from photos p, users u

where u.user_id=p.user_id and u.account_name = '"ckaestne"

DOCUMENT DATA MODELS

"_1d": 133422131,

"path": "/st/u211/1U6uFl147Fy.jpg",

"upload_date": "2021-12-03T09:18:32.124z2",

"user": {
"account_name": '"ckaestne",
"account_id": "a/54351"

I

"size": "5.7",

"camera": {
"manufacturer": "Google",
"print_name": "Google Pixel 5",
"settings": "f/1.8; 1/120; 4.44mm; IS0271"

db.getCollection('photos').find({ "user.account_name": '"ckaestne'"})

LOG FILES, UNSTRUCTURED DATA

0.
0.
0.
0.
0.
0.
0.
0.

oNcNoNcRoRoRoXKe)
RRRRRRRR

/1imgl3.jpg 200
/1img27.jpg 200
/main.css 200
/imgl3.jpg 200
/1img34.jpg 200
/1img27.jpg 200
/1imgl3.jpg 200
/1imgl3.jpg 200

LOG FILES, UNSTRUCTURED DATA

2020-06-25T13:
2020-06-25T13:
2020-06-25T13:
2020-06-25T13:

2020-06-25T13:
2020-06-25T13:
2020-06-25T13:
2020-06-25T13:

:14,601844, GET
:14,935791, GET
:14,557605, GET
:14,140291, GET
:14,425781, GET
:14,773178, GET
:14,901758, GET
:14,911008, GET

/data/m/goyas+ghosts+2006/17.mpg
/data/m/the+big+circus+1959/68.mp
/data/m/elvis+meets+nixon+1997/17
/data/m/the+house+of+the+spirits+
/data/m/the+theory+of+everything+
/data/m/toy+story+2+1999/59.mpg
/data/m/ignition+2002/14.mpg
/data/m/toy+story+3+2010/46.mpg

TRADEOFFS

DATA ENCODING

Plain text (csv, logs)

Semi-structured, schema-free (JSON, XML)
Schema-based encoding (relational, Avro, ...)
Compact encodings (protobuffer, ...)

DISTRIBUTED DATA
STORAGE

REPLICATION VS PARTITIONING

PARTITIONING

Divide data:

e Horizontal partitioning: Different rows in different tables; e.g., movies by

decade, hashing often used
e Vertical partitioning: Different columns in different tables; e.g., movie title

vs. all actors
Tradeoffs?
Client Client
Database Library Database Library

Database West Database East Database Europe

REPLICATION STRATEGIES: LEADERS AND
FOLLOWERS

Client Client
Database Library Database Library

. \ /‘(. : ""’u
write_ write read -, .)
\ \ A :

read Primary Database re;ad read

: / \ ; :
L svnc svng P
< (v A v

Database Replica 1 Database Replica 2

REPLICATION STRATEGIES: LEADERS AND
FOLLOWERS

Write to leader
= propagated synchronously or async.
Read from any follower

e Elect new leader on leader outage; catchup on follower outage

e Builtin model of many databases (MySQL, MongoDB, ...)

Benefits and Drawbacks?

MULTI-LEADER REPLICATION

e Scale write access, add redundancy
e Requires coordination among leaders
= Resolution of write conflicts
e Offline leaders (e.g. apps), collaborative editing

LEADERLESS REPLICATION

Client writes to multiple replica, propagate from there
Read from multiple replica (quorum required)

= Repair on reads, background repair process
Versioning of entries (clock problem)
e.g. Amazon Dynamo, Cassandra, Voldemort

Client

Client2

i

Database Database?2 Database3

TRANSACTIONS

Multiple operations conducted as one, all or nothing
Avoids problems such as
= dirty reads
= dirty writes
Various strategies, including locking and optimistic+rollback
Overhead in distributed setting

DATA PROCESSING
(OVERVIEW)

e Services (online)
= Responding to client requests as they come in
= Evaluate: Response time
e Batch processing (offline)
= Computations run on large amounts of data
= Takes minutes to days
= Typically scheduled periodically
= Evaluate: Throughput
e Stream processing (near real time)
= Processes input events, not responding to requests
= Shortly after events are issued

MICROSERVICES

MICROSERVICES

Users

Mobile App
(Client)

B

Content Deliv. -

Engine Sﬁ Cache :

Content Deliv.

Service 8

o N,

Audio
Assets

Assets Download
8 Metadata 8 Service 8

Service

— 2 >

Ownership Activation Stats

B B

) Datastorage - Calls

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

Figure based on Christopher Meiklejohn. Dynamic Reduction: Optimizing Service-level Fault Injection Testing With
Service Encapsulation. Blog Post 2021

10.

http://christophermeiklejohn.com/filibuster/2021/10/14/filibuster-4.html

MICROSERVICES

Independent, cohesive services
= Each specialized for one task
= Each with own data storage
= Eachindependently scalable through multiple instances + load
balancer (autoscaling infrastructure available)
Remote procedure calls
Different teams can work on different services independently (even in
different languages)

Substantial complexity from distributed system nature
= Various network failures
= [atency from remote calls
Avoid microservice complexity unless really needed for scalability

APl GATEWAY PATTERN

Central entry point, authentication, routing, updates, ...

Service 1
L Ej

Identity
provider

JSON/ I

ProtoBuf

Client 1
SSL
B AP| Gateway

Clent2 b

Service 2
. EJ

Service 3
Caching Logging E

BATCH PROCESSING

LARGE JOBS

e Analyzing TB of data, typically distributed storage
e Filtering, sorting, aggregating
e Producing reports, models, ...

cat /var/log/nginx/access.log |
awk '{print $7}' |
sort |

uniq -c |
sort -r -n |
head -n 5

11.

Partitioned Map Shuffle Reduce Result
data storage

Me—]
> map >

> map [P reduce P>

> map P> reduce [

> map >

©2:49:12 127.0.0.1 GET /imgl3.jpg 200 /img13, 1 /img13, 1 /imgl3, 4
©2:49:35 127.0.0.1 GET /img27.jpg 200 /img27, 1 /img13, 1
/imgl3, 1 /img27, 2

03:52:36 127.0.0.1 GET /main.css 200 /imgl3, 1 /imgl3, 1 /img34, 1
04:17:03 127.0.0.1 GET /imgl3.jpg 200

/img34, 1 /img27, 1
05:04:54 127.0.08.1 GET /img34.jpg 200 /img27, 1 /img34, 1
05:38:07 127.0.0.1 GET /img27.jpg 200 /img27, 1

/imgl3, 1
@5:44:24 127.0.0.1 GET /imgl3.jpg 200 /img13, 1

06:08:19 127.0.0.1 GET /imgl3.jpg 200

http://localhost:1948/mapreduce.svg

DISTRIBUTED BATCH PROCESSING

e Process data locally at storage
o Aggregate results as needed
e Separate pluming from job logic

MapReduce as common framework

MAPREDUCE -- FUNCTIONAL PROGRAMMING STYLE

e Similar to shell commands: Immutable inputs, new outputs, avoid side
effects

e Jobs can berepeated (e.g., on crashes)

Easy rollback

Multiple jobs in parallel (e.g., experimentation)

MACHINE LEARNING AND MAPREDUCE

11.

Speaker notes

Useful for big learning jobs, but also for feature extraction

DATAFLOW ENGINES (SPARK, TEZ, FLINK, ...)

e Single job, rather than subjobs

More flexible than just map and reduce

Multiple stages with explicit dataflow between them
e Oftenin-memory data

e Pluming and distribution logic separated

KEY DESIGN PRINCIPLE: DATA LOCALITY

Moving Computation is Cheaper than Moving Data --
Hadoop Documentation

e Data often large and distributed, code small
e Avoid transfering large amounts of data
e Perform computation where data is stored (distributed)

e Transfer only results as needed

e "The map reduce way"

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#aMoving_Computation_is_Cheaper_than_Moving_Data

STREAM PROCESSING

Event-based systems, message passing style, publish subscribe

STREAM PROCESSING (E.G., KAFKA)

T Friend
Photo detection
Uploader | Message Broker (model
inference)
. \ Topic: new_photos =
' ENENRENNNNNENNNNANNNENEN
. i L. Object
Notifica- _| Topic: friends_detected detection
tion -~ ENENRENNNNNENNNNANNNENEN (model
Sewlce inference)
' | Topic: detected_objects T
1 | OO
//
Object g
statistics Component [] Topic 4 b5 writer
—> Producer ~ -» Consumer

MESSAGING SYSTEMS

Multiple producers send messages to topic

Multiple consumers can read messages

Decoupling of producers and consumers

Message buffering if producers faster than consumers

Typically some persistency to recover from failures

Messages removed after consumption or after timeout

With or without central broker

Various error handling strategies (acknowledgements, redelivery, ...)

COMMON DESIGNS

Like shell programs: Read from stream, produce output in other stream. Loose

coupling
Object
, statistics
Object detected
>
detector objects Database
Photo > new photos writer
Uploader Friond E—
rien etected -
detector u friends Notnflcatlon
service
Server Logs || view_logs L Frleqd | . cgnﬁrmed_ Frler.\d model
Confirmation friends monitoring
Friend model
[JProcess [_]Topic training

STREAM QUERIES

Processing one event at a time independently

vs incremental analysis over all messages up to that point
vs floating window analysis across recent messages
Works well with probabilistic analyses

CONSUMERS

e Multiple consumers share topic for scaling and load balancing
e Multiple consumers read same message for different work
e Partitioning possible

DESIGN QUESTIONS

Message loss important? (at-least-once processing)

Can messages be processed repeatedly (at-most-once processing)
Is the message order important?

Are messages still needed after they are consumed?

STREAM PROCESSING AND AI-ENABLED SYSTEMS?

12.

Speaker notes

Process data as it arrives, prepare data for learning tasks, use models to annotate data, analytics

EVENT SOURCING

e Append only databases

e Record edit events, never mutate data

e Compute current state from all past events, can reconstruct old state
e For efficiency, take state snapshots

e Similar to traditional database logs

addPhoto(1d=133422131, user=54351, path="/st/u211/1U6uFl47Fy. jpg
updatePhotoData(1d=133422131, user=54351, title="Sunset")

replacePhoto(1d=133422131, user=54351, path="/st/x594/vipxBMF1LF
deletePhoto(1d=133422131, user=54351)

BENEFITS OF IMMUTABILITY (EVENT SOURCING)

All history is stored, recoverable

e \ersioning easy by storing id of latest record
e Can compute multiple views

e Comparegit

On a shopping website, a customer may add an item to their cart and then remove it
again. Although the second event cancels out the first event from the point of view of
order fulfillment, it may be useful to know for analytics purposes that the customer
was considering a particular item but then decided against it. Perhaps they will
choose to buy itin the future, or perhaps they found a substitute. This information is
recorded in an event log, but would be lost in a database that deletes items when
they are removed from the cart.

Source: Greg Young. CQRS and Event Sourcing. Code on the Beach 2014 via Martin Kleppmann. Designing Data-
Intensive Applications. OReilly. 2017.

https://www.youtube.com/watch?v=JHGkaShoyNs

DRAWBACKS OF IMMUTABLE DATA

Speaker notes

« Storage overhead, extra complexity of deriving state
« Frequent changes may create massive data overhead
« Some sensitive data may need to be deleted (e.g., privacy, security)

THE LAMBDA
ARCHITECTURE

LAMBDA ARCHITECTURE: 3 LAYER STORAGE
ARCHITECTURE

Batch layer: best accuracy, all data, recompute periodically
Speed layer: stream processing, incremental updates, possibly
approximated

Serving layer: provide results of batch and speed layers to clients

Assumes append-only data
Supports tasks with widely varying latency
Balance latency, throughput and fault tolerance

LAMBDA ARCHITECTURE AND MACHINE LEARNING
\r:quests

(@)
S Service uses Results /
5 2 (query / model inference) Model
n o
live [
loas incremental
N 9 Tupdates
o Event streams Stream
— .
b | ||
n o
archives daily full
update
= Batch
% o Database (Data lake) processing
mn ©

e Learn accurate model in batch job
e Learnincremental model in stream processor

DATA LAKE

e Trend to store all events in raw form (no consistent schema)
e May be useful later
e Data storage is comparably cheap

13.

DATA LAKE

Trend to store all events in raw form (no consistent schema)
May be useful later

Data storage is comparably cheap

Bet: Yet unknown future value of data is greater than storage costs

REASONING ABOUT DATAFLOWS

Many data sources, many outputs, many copies
Which data is derived from what other data and how?
Is it reproducible? Are old versions archived?
How do you get the right data to the right place in the right format?

Plan and document data flows

AN

DetectDeletedlssues

A

{ project Iist} { GitHub API }

N

IssueDownloader

stream:issues

perspective

A

{ stream:issue-processing-1 }

politeness

A

{ stream:deleted-issue-candidates }

{ GitHub API }

{ stream:issue-processing-2 }

\

CheckDeletedlIssues

Y

{ stream:deleted-issues }

DetectToxicity DetectLockedlIssues

A 4 Y

stream:toxic-issues J\[stream:locked-issues J

DB-Writer Toxicity Bot

A A
database GitHub API

13.

7

Object

statistics
Object detected
detector objects Database
Photo :
| new_photos writer
Uploader -
Friend detected Notificali
detector friends otirication
service
Server Logs P view_logs N Frlen_d | cgnﬂrmed_ Frler)d r_nodel
Confirmation friends monitoring
Friend model

[JProcess [_]Topic

training

SE4AI: Invited Talk Molham Aref "Business Systems with Machine Learning"
Enterprise Tech Stack — Now isn’t much different

D Baia Optimization
' ’ Mining Modeling o
Formulas: A3 = B2 — D17 & Stats
Excell__ model Spark, OPL
i Python AMPL
Al / Planning o * e
p © clad PyTorch, Above
(future) or- Server PyTarch, Abo
Anaplan Spark, Optimization
D . Solver
Gurobi,
CPLEX
‘homegrown’
BI Browser > 2' Anp
erver
(past) Tableau, akp
Looker n ’

—
App

Queries & Views — SQL o
with DDL, DML, etc.

<
OLTP rowser =
Stored Proced — not
(nOW) " Java, Python, Ruby, Oracle \ T aSCecLes 0
' ‘ JavaScript + React, Microsoft SQL % l
Angular, Vue, ...
MySQL
. = ' PostgreSQL
MQ/Streaming Platform —
Kafka

Molham Aref "Business Systems with Machine Learning"

13.

https://youtu.be/_bvrzYOA8dY?t=1452
https://www.youtube.com/watch?v=_bvrzYOA8dY

BREAKOUT: VIMEO VIDEOS

In groups, discuss inslack #1lecture:

e How to distribute storage:
e How to design scalable copy-right protection solution:
e How to design scalable analytics (views, ratings, ...):

230M+ 1.6M 190+

users paid subscribers countries

350K 100B+ 1,100+

new videos added per day video views employees around the world

https://vimeo.com/about

EXCURSION: ETL TOOLS

Extract, tranform, load

The data engineer's toolbox

DATA WAREHOUSING (OLAP)

e Large denormalized databases with materialized views for large scale
reporting queries
e e.g.sales database, queries for sales trends by region

e Read-only except for batch updates: Data from OLTP systems loaded
periodically, e.g. over night

ETL

ETL

E(T)L

E(T)L

h 4

Business
User or Unit

Business

i User or Unit

15.

Speaker notes

Image source: https://commons.wikimedia.org/wiki/File:Data_Warehouse_Feeding_Data_ Mart.jpg

https://commons.wikimedia.org/wiki/File:Data_Warehouse_Feeding_Data_Mart.jpg

ETL: EXTRACT, TRANSFORM, LOAD

Transfer data between data sources, often OLTP -> OLAP system
Many tools and pipelines
= Extract data from multiple sources (logs, JSON, databases),
snapshotting
= Transform: cleaning, (de)normalization, transcoding, sorting, joining
= Loadingin batches into database, staging
Automation, parallelization, reporting, data quality checking, monitoring,
profiling, recovery
Often large batch processes
Many commercial tools

Examples of tools in several lists

https://www.softwaretestinghelp.com/best-etl-tools/
https://www.scrapehero.com/best-data-management-etl-tools/

@ Xplenty

The leading data integration platform to
bring all your data sources together.

Create simple, visualized data pipelines to your data warehouse or data lake.

GET STARTED

15.

https://www.xplenty.com/

SE4AI: Invited Talk Molham Aref "Business Systems with Machine Learning"
Enterprise Tech Stack — Now isn’t much different

D Baia Optimization
' ’ Mining Modeling o
Formulas: A3 = B2 — D17 & Stats
Excell__ model Spark, OPL
i Python AMPL
Al / Planning o * e
p © clad PyTorch, Above
(future) or- Server PyTarch, Abo
Anaplan Spark, Optimization
D . Solver
Gurobi,
CPLEX
‘homegrown’
BI Browser > 2' Anp
erver
(past) Tableau, akp
Looker n ’

—
App

Queries & Views — SQL o
with DDL, DML, etc.

<
OLTP rowser =
Stored Proced — not
(nOW) " Java, Python, Ruby, Oracle \ T aSCecLes 0
' ‘ JavaScript + React, Microsoft SQL % l
Angular, Vue, ...
MySQL
. = ' PostgreSQL
MQ/Streaming Platform —
Kafka

Molham Aref "Business Systems with Machine Learning"

15.

https://youtu.be/_bvrzYOA8dY?t=1452
https://www.youtube.com/watch?v=_bvrzYOA8dY

COMPLEXITY OF
DISTRIBUTED SYSTEMS

A problem has been detected and windows has been shut down TO prévent
TD _,rl'_'l ur f.ﬂf‘.‘put ar.

DRIVER_IRQL_NOT_LESS_OR_EQUAL

If this is the first time you've seen this Stop error screen,
restart your computer, If this s n appears again, follow
these steps:

check to make sure any new hardware or software 1s properly installed.
If this 45 a new installacion, ask your hardware or software manufac
for any wWindows updates you m":ghr, neéd.

If problems continue, disable or remove any newly installed hardware
or software. Disable BIOS mémory options such as <iaching or shadowing.
If you need to use Safe Mode to remove or disable components,

your <omputer, press F8 to select Advanced Startup optiors, and rhnn
select Safe Mode.

Technical information:

ek STOP: OO0

= Address FS6B5A89 base at FBGB5000, DatesStamp 3

f physical memory
j ju-.; complete, i
stem adninistrator or technical support group for further

COMMON DISTRIBUTED SYSTEM ISSUES

e Systems may crash

e Messages take time

e Messages may get lost

e Messages may arrive out of order

e Messages may arrive multiple times

e Messages may get manipulated along the way
e Bandwidth limits

e Coordination overhead

e Network partition

TYPES OF FAILURE BEHAVIORS

e Fail-stop
Other halting failures
e Communication failures
= Send/receive omissions
= Network partitions
= Message corruption
e Data corruption
e Performance failures
= High packet loss rate
= Low throughput
= High latency
Byzantine failures

COMMON ASSUMPTIONS ABOUT FAILURES

e Behavior of others is fail-stop

e Network is reliable

e Network is semi-reliable but asynchronous

e Network is lossy but messages are not corrupt
e Network failures are transitive

e Failures are independent

e |ocal datais not corrupt

e Failures are reliably detectable

e Failures are unreliably detectable

STRATEGIES TO HANDLE FAILURES

e Timeouts, retry, backup services

e Detect crashed machines (ping/echo, heartbeat)
e Redundant + first/voting

e Transactions

e Do lost messages matter?
e Effect of resending message?

TEST ERROR HANDLING

e Recall: Testing with stubs
e Recall: Chaos experiments

PERFORMANCE PLANNING
AND ANALYSIS

PERFORMANCE PLANNING AND ANALYSIS

e |deally architectural planning upfront

= |dentify key components and their interactions
= Estimate performance parameters
= Simulate system behavior (e.g., queuing theory)

e Existing system: Analyze performance bottlenecks

= Profiling of individual components
= Performance testing (stress testing, load testing, etc)
= Performance monitoring of distributed systems

PERFORMANCE ANALYSIS

What is the average waiting?

How many customers are waiting on average?

How long is the average service time?

What are the chances of one or more servers being idle?
What is the average utilization of the servers?

Early analysis of different designs for bottlenecks
Capacity planning

QUEUING THEORY

e Queuing theory deals with the analysis of lines where customers wait to
receive a service

= Waiting at Quiznos
= Waiting to check-in at an airport
= Kepton hold at a call center
= Streaming video over the net
= Requesting a web service
e A queue is formed when request for services outpace the ability of the
server(s) to service them immediately
= Requests arrive faster than they can be processed (unstable queue)
= Requests do not arrive faster than they can be processed but their
processing is delayed by some time (stable queue)

e Queues exist because infinite capacity is infinitely expensive and excessive
capacity is excessively expensive

QUEUING THEORY

Source

Single queue, single server

Source 1

Source 2

Source n

Multiple queues, single server

>

Source

—El<>.‘

Single queue, multiple servers >

Source 1

Source 2

Source n

Multiple queues, multiple servers >

Primary
Secondary

ANALYSIS STEPS (ROUGHLY)

Identify system abstraction to analyze (typically architectural level, e.g.
services, but also protocols, datastructures and components, parallel
processes, networks)

Model connections and dependencies

Estimate latency and capacity per component (measurement and testing,
prior systems, estimates, ...)

Run simulation/analysis to gather performance curves

Evaluate sensitivity of simulation/analysis to various parameters (‘what-if
questions’)

SIMULATION (E.G., JMT)

s JMODEL - Advanced queuing network design tool |Z||E|[Z|

File Edit Define Solve Help
orE/vD oo BW(ik>nedLe
NEe®l Q0@

me/

SCQustomers (w0 | .. Diskz .

~le-

n.sk3

" - Storage server

>

Serverl . h -~ - Serverd-
. Setvers |

G.Serazzi Ed. Performance Evaluation Modelling with JMT: learning by examples. Politecnico di Milano - DEI, TR
2008.09, 366 pp., June 2008 17.

PROFILING

Mostly used during development phase in single components

|87 VisuslvM 1.2
| File Applications View Teools Window Help
(S SENE
[@ n || startPage =| & Jvadens (pid 4375) = | EEHEE]
& i Lecal [overview | 58 tostor | = Theeads | 45} Sampler | () erofier | (2 [rtpshot] 11:57:27 0 1 | 5
1 Wi
=gl JavadDems fd 4376 < Java2Demo (pid 4375)
{4 [snapshot] 12:57:27 AM P 7
58 Remate — e
i3} Snaesnots B vew Civetoss »| B Q@ &
Cal Tree - Method Time [%] + Time Time (CPU]) Imvocations &]
=+ AWT-EventQueus- [T A5 1=
1 5 jvaawt EveriDispatchhread. [2153 ... (10w M523 ms e
= java.awt.EventfepatchThee [N 21523 ... (10 052 ms 1
=% fava,awt. EventDispatct’ I 21555 ... (1o 52T s 110
=% java.awt EventOp: NG 21563 ... (100 0523 ms 110
- 3 jarva et Everits I 21553 ... (100°) M52 e FET g
4 n | '
ot 5ot - Method Selftime .. Sef tme Sefftme () Iwocatons @)
|5t java2d. Suncraphics 20 drawString (. [15591 .0 16783 ms 13 -
sun. java 2d. SunGraphics 20Ul [I LT s [ba% 1350 ms 14
:}wax.m.JmWLpuhﬂmﬂml 1218 ms [5.5%) SrAms 108
v 2. Sunaraphics 20, draw | | Co0me [1.0%] 630 ms 7
|jarva.awt. Fond. TextLayout. <inits [| AHms [185%] 404 ms 4
b Eel Tl s 5 | Feey = a0 g i
W DHethod Hame Fiber] -

[55 CallTree | B FotSpots | [Comtined | 10 Infa

PERFORMANCE TESTING

Load testing: Assure handling of maximum expected load

Scalability testing: Test with increasing load

Soak/spike testing: Overload application for some time, observe stability
Stress testing: Overwhelm system resources, test graceful failure + recovery

Observe (1) latency, (2) throughput, (3) resource use
All automateable; tools like JMeter

PERFORMANCE MONITORING OF DISTRIBUTED
SYSTEMS

INGSecureWeb 5~ Dashboard Top Business Transactions Transaction Snapshots Transaction Analysis Machine Snapshots

Default Flow Map + P e 12%: .
0 -y _1;) ™ - e
. 2 T . | St
SecureL

Secure

~Profilc/Anyware - 7.

Keychent

SecureCCA

IDiMsgQuens - A= > n3Em - @ ertor f m ™~ / Wie Sta 00 % <

$ 0 ais { mi ; Talws Exceptions

Ara<LAB : : in; 1 37 = g | 7 OWFS Exceptions

p HTTP Error Codes
0 % ! mn | -~ ~ Wt Error Page Redirects
et m Wepr—" 20k}
] - 1 Service Endpoints
“ 0 9 ' - i
. ‘ =] | DGWProdus heckConnectior
" . worg L e a— INGErrorPage
oo & - = A
— OFstle DE - OFa..JGNWI the Pa DGWIA queueGetList Ototal <1/
= e Not comparing min
Oradde DS - 4D....0 - Productior - AT hackfannartion Antal '
Load 134.3K cams 6,410 cais s mr Response Time 598 ma sverage Errors 1.1% 1.46K erars 342 srorsimn
10000 1000 ms 1000
5000 500 ms
0 ms
04:15 PM 04:30 P 04:35PM 04:40 PM O4:15PM 04:20 PM 04:25 PM G430 PM 04:35PM 04:40 M

Source: https://blog.appdynamics.com/tag/fiserv/

http://localhost:1948/distprofiler.png
https://blog.appdynamics.com/tag/fiserv/

PERFORMANCE MONITORING OF DISTRIBUTED
SYSTEMS

e |nstrumentation of (Service) APIs
e Load of various servers
e Typically measures: latency, traffic, errors, saturation

e Monitoring long-term trends

e Alerting

e Automated releases/rollbacks
e Canary testing and A/B testing

SUMMARY

Large amounts of data (training, inference, telemetry, models)
Distributed storage and computation for scalability

Common design patterns (e.g., batch processing, stream processing,
lambda architecture)

Design considerations: mutable vs immutable data

Distributed computing also in machine learning

Lots of tooling for data extraction, transformation, processing

Many challenges through distribution: failures, debugging, performance, ...

Recommended reading: Martin Kleppmann. Designing Data-Intensive
Applications. OReilly. 2017.

https://dataintensive.net/

