PROCESS AND TECHNICAL
DEBT

Christian Kaestner

Required Reading:

e Sculley, David, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary,
Michael Young, Jean-Francois Crespo, and Dan Dennison. "Hidden technical debt in machine learning
systems." In Advances in neural information processing systems, pp. 2503-2511. 2015.

Suggested Readings:

e Fowler and Highsmith. The Agile Manifesto

e Steve McConnell. Software project survival guide. Chapter 3

e Kruchten, Philippe, Robert L. Nord, and Ipek Ozkaya. "Technical debt: From metaphor to theory and
practice." IEEE Software 29, no. 6 (2012): 18-21.


http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://agilemanifesto.org/
https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_58818.pdf

LEARNING GOALS

Overview of common data science workflows (e.g., CRISP-DM)

= |mportance of iteration and experimentation

= Role of computational notebooks in supporting data science

workflows

Overview of software engineering processes and lifecycles: costs and
benefits of process, common process models, role of iteration and
experimentation
Contrasting data science and software engineering processes, goals and
conflicts
Integrating data science and software engineering workflows in process
model for engineering Al-enabled systems with ML and non-ML
components; contrasting different kinds of Al-enabled systems with data
science trajectories
Overview of technical debt as metaphor for process management; common
sources of technical debt in Al-enabled systems



CASE STUDY: REAL-ESTATE WEBSITE

Buy Rent Sell Home Loans Agent finder ? lelow Manage Rentals Advertise Help Signin

Relmg 1ne home




ML COMPONENT: PREDICTING REAL ESTATE VALUE

Given a large database of house sales and statistical/demographic data from
public records, predict the sales price of a house.

f(size, rooms, tax, neighborhood, . ..) — price

aZi"OW / Edit Q Save &> Share

3bd 1ba 2,090 Square Feet
541 S Graham St, Pittsburgh, PA 15232
Off market = Zestimate®: $384,287 = Rent Zestimate®: $2,195/mo

Est. refi payment: $2,102/mo e Get current rates




DATA SCIENCE: ITERATION
AND EXPLORATION



WHAT'S YOUR PROCESS?




DATA SCIENCE IS ITERATIVE AND EXPLORATORY
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(Source: Guo. "Data Science Workflow: Overview and Challenges." Blog@CACM,

Oct 2013)


https://cacm.acm.org/blogs/blog-cacm/169199-data-science-workflow-overview-and-challenges/fulltext

DATA SCIENCE IS ITERATIVE AND EXPLORATORY

> Data
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Martinez-Plumed et al. "CRISP-DM Twenty Years Later: From Data Mining
Processes to Data Science Trajectories." IEEE Transactions on Knowledge and Data
Engineering (2019).


https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf

DATA SCIENCE IS ITERATIVE AND EXPLORATORY

Data Science Lifecycle
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(Microsoft Azure Team, "What is the Team Data Science Process?" Microsoft
Documentation, Jan 2020)


https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/media/overview/tdsp-lifecycle2.png
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview

DATA SCIENCE IS ITERATIVE AND EXPLORATORY
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Source: Patel, Kayur, James Fogarty, James A. Landay, and Beverly Harrison.
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"Investigating statistical machine learning as a tool for software development." In

Proc. CHI, 2008.


http://localhost:1948/accuracy-improvements.png
http://www.kayur.org/papers/chi2008.pdf

Speaker notes

This figure shows the result from a controlled experiment in which participants had 2 sessions of 2h each to build a
model. Whenever the participants evaluated a model in the process, the accuracy is recorded. These plots show the
accuracy improvements over time, showing how data scientists make incremental improvements through frequent
iteration.



DATA SCIENCE IS ITERATIVE AND EXPLORATORY

e Science mindset: start with rough goal, no clear specification, unclear
whether possible

e Heuristics and experience to guide the process

e Try and error, refine iteratively, hypothesis testing

Go back to data collection and cleaning if needed, revise goals



SHARE EXPERIENCE?




DIFFERENT TRAJECTORIES

> Data
Understanding

Data
Preparation

Business
Understanding |¢

Deployment

Modelling

Evaluation

Martinez-Plumed et al. "CRISP-DM Twenty Years Later: From Data Mining
Processes to Data Science Trajectories." IEEE Transactions on Knowledge and Data
Engineering (2019).


https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf
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From: Martinez-Plumed et al. "CRISP-DM Twenty Years Later: From Data Mining
Processes to Data Science Trajectories." IEEE Transactions on Knowledge and Data
Engineering (2019).


https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf

Speaker notes

« A product to recommend trips connecting tourist attractions in a town may be based on location tracking data
collected by navigation and mapping apps. To build such a project, one might start with a concrete goal in mind
and explore whether enough user location history data is available or can be acquired. One would then go
through traditional data preparation and modeling stages before exploring how to best present the results to
users.

« An insurance company tries to improve their model to score the risk of drivers based on their behavior and
sensors in their cars. Here an existing product is to be refined and a better understanding of the business case is
needed before diving into the data exploration and modeling. The team might spend significant time in exploring
new data sources that may provide new insights and may debate the cost and benefits of this data or data
gathering strategy (e.g., installing sensors in customer cars).

« A credit card company may want to sell data about what kind of products different people (nationalities) tend to
buy at different times and days in different locations to other companies (retailers, restaurants). They may
explore existing data without yet knowing what kind of data may be of interest to what kind of customers. They
may actively search for interesting narratives in the data, posing questions such as “Ever wondered when the
French buy their food?” or “Which places the Germans flock to on their holidays?” in promotional material.



COMPUTATIONAL NOTEBOOKS

Origins in "literate programming",
interleaving text and code, treating
programs as literature (Knuth'84)
First notebook in Wolfram
Mathematica 1.0 in 1988
Document with text and code cells,
showing execution results under
cells

Code of cells is executed, per cell,
in a kernel

Many notebook implementations
and supported languages, Python
+ Jupyter currently most popular

° # load data collected from teaml
import pandas as pd

url = 'http://128.2.25.78:8080/private/logl.clean’
df = pd.read_csv(url)

df.head()

o) dayIdx user userAvgTime Tlocation dow isWeekend time
0 0 Pittsburgh66Correy 7.045001 Pittsburgh 6 True 0.000000
1 1 Pittsburgh66Correy 7.045001 Pittsburgh 7 True 6.883333
2 2 Pittsburgh66Correy 7.045001 Pittsburgh 1 False 6.816667
3 3 Pittsburgh66Correy 7.045001 Pittsburgh 2 False 7.383333
4 4 Pittsburgh66Correy 7.045001 Pittsburgh 8 False 0.000000

Data was preprocessed externally, identifying the time at a given day when the light was first turned or}
12pm). Weather and sunrise information is not included here, though that'd be important. If the light w
this morning (quite common), 0 is recorded.

[ ] # just data encoding and splitting X and Y

X = df.drop(['time'], axis=1)
YnonZero = df['time'] > 0
Y = df['time"']

from sklearn import preprocessing

# leDate = preprocessing.LabelEncoder()
# leDate.fit(X['date'])

# leDate.transform(X['date'])

X=X.apply(preprocessing.LabelEncoder().fit_transform)
X




Speaker notes

« See also https://en.wikipedia.org/wiki/Literate_programming
« Demo with public notebook, e.g., https://colab.research.google.com/notebooks/mlcc/intro_to pandas.ipynb


https://en.wikipedia.org/wiki/Literate_programming
https://colab.research.google.com/notebooks/mlcc/intro_to_pandas.ipynb

NOTEBOOKS SUPPORT ITERATION AND
EXPLORATION

Quick feedback, similar to REPL

Visual feedback including figures and tables
Incremental computation: reexecuting individual cells

e Quick and easy: copy paste, no abstraction needed

e Easy to share: documentincludes text, code, and results



BRIEF DISCUSSION: NOTEBOOK LIMITATIONS AND
DRAWBACKS?

.13



SOFTWARE ENGINEERING
PROCESS



INNOVATIVE VS ROUTINE PROJECTS

e Like data science tasks, most software projects are innovative
= Google, Amazon, Ebay, Netflix
= Vehicles and robotics
= [ anguage processing, Graphics, Al
e Routine (now, not 20 years ago)
= E-commerce websites?
= Product recommendation? Voice recognition?
= Routine gets automated -> innovation cycle



A SIMPLE PROCESS

1. Discuss the software that needs to be written
2. Write some code

3. Test the code to identify the defects

4. Debug to find causes of defects

5. Fix the defects

6. If not done, return to step 1



SOFTWARE PROCESS

“The set of activities and associated results that produce a
software product”

Examples?







Speaker notes

Writing down all requirements Require approval for all changes to requirements Use version control for all changes
Track all reported bugs Review requirements and code Break down development into smaller tasks and schedule and
monitor them Planning and conducting quality assurance Have daily status meetings Use Docker containers to push
code between developers and operation
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Speaker notes

Visualization following McConnell, Steve. Software project survival guide. Pearson Education, 1998.
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Speaker notes

Idea: spent most of the time on coding, accept a little rework
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Speaker notes

negative view of process. pure overhead, reduces productive work, limits creativity
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Speaker notes

Real experience if little attention is payed to process: increasingly complicated, increasing rework; attempts to rescue by
introducing process



EXAMPLE OF PROCESS PROBLEMS?




Speaker notes
Collect examples of what could go wrong:

Change Control: Mid-project informal agreement to changes suggested by customer or manager. Project scope expands
25-50% Quality Assurance: Late detection of requirements and design issues. Test-debug-reimplement cycle limits
development of new features. Release with known defects. Defect Tracking: Bug reports collected informally, forgotten
System Integration: Integration of independently developed components at the very end of the project. Interfaces out of
sync. Source Code Control: Accidentally overwritten changes, lost work. Scheduling: When project is behind,
developers are asked weekly for new estimates.



TYPICAL PROCESS STEPS (NOT NECESSARILY IN
THIS ORDER)

e Understand customers, identify what to build, by when, budget
Identify relevant qualities, plan/design system accordingly
Test, deploy, maintain, evolve

e Plan, staff, workaround



Buy Rent

Sell

Home Loans

Agent finder ? Z i I Iowc Manage Rentals Advertise Help Signin

ine home
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SURVIVAL MODE

e Missed deadlines -> "solo development mode" to meet own deadlines
* |gnore integration work
e Stop interacting with testers, technical writers, managers, ...



Hypothesis: Process increases flexibility and efficiency + Upfront investment for
later greater returns
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Speaker notes

ideal setting of little process investment upfront
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from Soffware Profect Strvival Guide (Ivlicrosoft Press, 1998).
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.13



Speaker notes

Empirically well established rule: Bugs are increasingly expensive to fix the larger the distance between the phase
where they are created vs where they are corrected.
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Speaker notes

Complicated processes like these are often what people associate with “process". Software process is needed, but does
not need to be complicated.



SOFTWARE PROCESS
MODELS



AD-HOC PROCESSES

1. Discuss the software that needs to be written
2. Write some code

3. Test the code to identify the defects

4. Debug to find causes of defects

5. Fix the defects

6. If not done, return to step 1



WATERFALL MODEL

Requirements j

A .
.. ... | Architecture /

’ Design I

A
"+ =+ = 1 Implementation —*
A
I Testing _+
{ _. . | Maintenance /
Operations

taming the chaos, understand requirements, plan before coding, remember testing



Speaker notes

Although dated, the key idea is still essential -- think and plan before implementing. Not all requirements and design can
be made upfront, but planning is usually helpful.



RISK FIRST: SPIRAL MODEL
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incremental prototypes, starting with most risky components



CONSTANT ITERATION: AGILE

24 h
30 days
: )
P27
Product Backlog Sprint Backlog Sprint Working increment

of the software

working with customers, constant replanning (CC BY-SA 4.0, Lakeworks)



SELECTING PROCESS MODELS

In slack, vote: [1] Ad-hoc [2] Waterfall [3] Spiral [4] Agile

And write a short justification in #1lecture

® ® . L
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DATA SCIENCE VS
SOFTWARE ENGINEERING



DISCUSSION: ITERATION IN NOTEBOOK VS AGILE?

First Second Final
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——
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TAP2 X X 75.3%
JEp—
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r S 020 0
.
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TAP8 | 22.8% (CC BY-SA 4.0, Lakeworks)
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http://localhost:1948/accuracy-improvements.png




Speaker notes

There is similarity in that there is an iterative process, but the idea is different and the process model seems mostly
orthogonal to iteration in data science. The spiral model prioritizes risk, especially when it is not clear whether a model is
feasible. One can do similar things in model development, seeing whether it is feasible with data at hand at all and build
an early prototype, but it is not clear that an initial okay model can be improved incrementally into a great one later. Agile
can work with vague and changing requirements, but that again seems to be a rather orthogonal concern. Requirements
on the product are not so much unclear or changing (the goal is often clear), but it's not clear whether and how a model

can solve it.



POOR SOFTWARE ENGINEERING PRACTICES IN
NOTEBOOKS?

o # load data collected from teaml
import pandas as pd

url = 'http://128.2.25.78:8080/private/logl.clean’
df = pd.read_csv(url)

df.head()

~m dayIdx user userAvgTime 1location dow isWeekend time
0 0 Pittsburgh66Correy 7.045001 Pittsburgh 6 True 0.000000
1 1 Pittsburgh66Correy 7.045001 Pittsburgh 7 True 6.883333
2 2 Pittsburgh66Correy 7.045001  Pittsburgh 1 False 6.816667
3 3 Pittsburgh66Correy 7.045001  Pittsburgh 2 False 7.383333
4 4 Pittsburgh66Correy 7.045001  Pittsburgh 8 False 0.000000

Data was preprocessed externally, identifying the time at a given day when the light was first turned o}
12pm). Weather and sunrise information is not included here, though that'd be important. If the light w
this morning (quite common), 0 is recorded.

[ ] # just data encoding and splitting X and Y

X = df.drop(['time'], axis=1)
YnonZero = df['time'] > 0
Y = df['time']

from sklearn import preprocessing

# leDate = preprocessing.LabelEncoder()
# leDate.fit(X['date'])

# leDate.transform(X['date'])

X=X.apply(preprocessing.LabelEncoder().fit_transform)
X

Little abstraction

Global state

No testing

Heavy copy and paste

Little documentation

Poor version control

Out of order execution

Poor development features (vs IDE)






UNDERSTANDING DATA SCIENTIST WORKFLOWS

e |nstead of blindly recommended "SE Best Practices" understand context
 Documentation and testing not a priority in exploratory phase
e Help with transitioning into practice

= From notebooks to pipelines

= Support maintenance and iteration once deployed

= Provide infrastructure and tools



Data Software
Scientists = Engineers



DATA SCIENCE PRACTICES BY SOFTWARE
ENGINEERS

Many software engineers get involved in data science without explicit
training

Copying from public examples, little reading of documentation

Lack of data visualization/exploration/understanding, no focus on data
quality

Strong preference for code editors, non-GUI tools

Improve model by adding more data or changing models, rarely feature
engineering or debugging

Lack of awareness about overfitting/bias problems, single focus on
accuracy, no monitoring

More system thinking about the product and its needs


http://www.audentia-gestion.fr/MICROSOFT/Machine_Teaching_DIS_18.pdf

INTEGRATED PROCESS FOR
Al-ENABLED SYSTEMS



T~ T
R N

Time
| =
Software system Decomposition Component Integration Software system

specification specification,
search, modification,
creation

Figure from Dogru, Ali H., and Murat M. Tanik. “A process model for component-oriented software engineering.”
IEEE Software 20, no. 2 (2003): 34-41.
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Initial
Requirements

o
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{l Data collection, clean.
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Deployment
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PROCESS FOR AI-ENABLED SYSTEMS

Integrate Software Engineering and Data Science processes

Establish system-level requirements (e.g., user needs, safety, fairness)
Inform data science modeling with system requirements (e.g., privacy,
fairness)

Try risky parts first (most likely include ML components; ~spiral)
Incrementally develop prototypes, incorporate user feedback (~agile)
Provide flexibility to iterate and improve

Design system with characteristics of Al component (e.g., Ul design,
safeguards)

Plan for testing throughout the process and in production

Manage project understanding both software engineering and data science
workflows

No existing "best practices" or workflow models



TRAJECTORIES

e Not every project follows the same development process, e.g.
= Small ML addition: Product first, add ML feature later
= Research only: Explore feasibility before thinking about a product
= Data science first: Model as central component of potential product,
build system around it

e Different focus on system requirements, qualities, and upfront planning
e Manage interdisciplinary teams and different expectations
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Component ] Design N I_mplementa N Quality
Requirements tion Assurance
1 1 I
7 ________ ! f ________ ! f ________ ! '
System > Planning / Integration, > .
Requirements Architecture Quality Ass. Operations
A JI * ML Component | A : :
Data Training, .
I ggdﬁlrements | Collection, [>| Pipeline ™ S::Llllgnce ; !
| q Cleaning, ... Automation Pipeline, | |
I yy T yy y\ ML Monitoring and 1 1
1 1 1 Model Infe
I ________________________ Component: 1 1
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TECHNICAL DEBT

TECH DEBT

WE ARE PROGRESSING
S0 FAST TOGETHER

)
e
b‘ .

MONKEYUSER .COM



https://www.monkeyuser.com/2018/tech-debt/

TECHNICAL DEBT METAPHOR

e Analogy to financial debt
= Have a benefit now (e.g., progress quickly, release now)
= accepting later cost (loss of productivity, e.g., higher
maintenance/operating cost, rework)
= debt accumulates and can suffocate project
e |deally a deliberate decision (short term tactical or long term strategic)
e |deally track debt and plan for paying it down

Examples?



Reckless

“We don’t have time

Prudent

“We must ship now

for design” and deal with
consequences”
Deliberate
Inadvertent
] , . “Now we know how we
‘What's Layering: should have done it”

Source: Martin Fowler 2009,
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html


https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

TECHNICAL DEBT FROM ML COMPONENTS?

As a group in slack #lecture: Post two plausible examples technical debtin
housing price prediction system:

1. Deliberate, prudent:
2. Reckless, inadvertent:
3. Andrewlds:



. @ . . .
Buy Rent Sell HomeLoans Agentfinder ? lelow Manage Rentals Advertise Help Signin

ine home

Jfing a place you'll love.

=
-
=

Enter an address, neighborhood, city, or ZIP c... Q

Sculley, David, et al. Hidden technical debt in machine learning systems. Advances in Neural Information
Processing Systems. 2015.


http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

THE NOTEBOOK

Jupyter Notebooks are a gift from God to those who work
with data. They allow us to do quick experiments with
Julia, Python, R, and more -- John Paul Ada

° # load data collected from teaml
import pandas as pd

url = 'http://128.2.25.78:8080/private/logl.clean’
df = pd.read_csv(url)

df.head()
~ dayIdx user userAvgTime Llocation dow isWeekend time
0 0 Pittsburgh66Correy 7.045001  Pittsburgh 6 True 0.000000
1 1 Pittsburgh66Correy 7.045001  Pittsburgh 7 True 6.883333
2 2 Pittsburgh66Correy 7.045001 Pittsburgh 1 False 6.816667
3 3 Pittsburgh66Correy 7.045001  Pittsburgh 2 False 7.383333
4 4 Pittsburgh66Correy 7.045001 Pittsburgh 3 False 0.000000

Data was preprocessed externally, identifying the time at a given day when the light was first turned on}
12pm). Weather and sunrise information is not included here, though that'd be important. If the light w.
this morning (quite common), 0 is recorded.

[ 1 # just data encoding and splitting X and Y

X = df.drop(['time'], axis=1)
YnonZero = df['time'] > 0
Y = df['time"]

from sklearn import preprocessing

# leDate = preprocessing.LabelEncoder()
# leDate.fit(X['date'])

# leDate.transform(X['date'])

X=X.apply(preprocessing.LabelEncoder().fit_transform)
X



https://towardsdatascience.com/no-hassle-machine-learning-experiments-with-azure-notebooks-e1a22e8782c3

Speaker notes

Discuss benefits and drawbacks of Jupyter style notebooks



ML AND TECHNICAL DEBT

e Often reckless and inadvertent in inexperienced teams

e ML can seem like an easy addition, but it may cause long-term costs

e Needs to be maintained, evolved, and debugged

e Goals may change, environment may change, some changes are subtle

e Example problems
= Systems and models are tangled and changing one has cascading
effects on the other
= Untested, brittle infrastructure; manual deployment
= Unstable data dependencies, replication crisis
= Data drift and feedback loops
= Magic constants and dead experimental code paths

Further reading: Sculley, David, et al. Hidden technical debt in machine learning systems. Advances in Neural
Information Processing Systems. 2015.


http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

CONTROLLING TECHNICAL DEBT FROM ML
COMPONENTS




CONTROLLING TECHNICAL DEBT FROM ML
COMPONENTS

Avoid Al when not needed

Understand and document requirements, design for mistakes

Build reliable and maintainable pipelines, infrastructure, good engineering
practices

Test infrastructure, system testing, testing and monitoring in production
Test and monitor data quality

Understand and model data dependencies, feedback loops, ...

Document design intent and system architecture

Strong interdisciplinary teams with joint responsibilities

Document and track technical debt
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SUMMARY

Data scientists and software engineers follow different processes

ML projects need to consider process needs of both

lteration and upfront planning are both important, process models codify
good practices

Deliberate technical debt can be good, too much debt can suffocate a
project

Easy to amount (reckless) debt with machine learning
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