
PROCESS AND TECHNICALPROCESS AND TECHNICAL
DEBTDEBT

Christian Kaestner

Required Reading:

Sculley, David, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary,
Michael Young, Jean-Francois Crespo, and Dan Dennison. "

." In Advances in neural information processing systems, pp. 2503-2511. 2015.

Suggested Readings:

Fowler and Highsmith. 
Steve McConnell. Software project survival guide. Chapter 3
Kruchten, Philippe, Robert L. Nord, and Ipek Ozkaya. "

." IEEE Software 29, no. 6 (2012): 18-21.

Hidden technical debt in machine learning
systems

The Agile Manifesto

Technical debt: From metaphor to theory and
practice

1 . 1

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://agilemanifesto.org/
https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_58818.pdf


LEARNING GOALSLEARNING GOALS
Overview of common data science workflows (e.g., CRISP-DM)

Importance of iteration and experimentation
Role of computational notebooks in supporting data science
workflows

Overview of software engineering processes and lifecycles: costs and
benefits of process, common process models, role of iteration and
experimentation
Contrasting data science and software engineering processes, goals and
conflicts
Integrating data science and software engineering workflows in process
model for engineering AI-enabled systems with ML and non-ML
components; contrasting different kinds of AI-enabled systems with data
science trajectories
Overview of technical debt as metaphor for process management; common
sources of technical debt in AI-enabled systems

1 . 2



CASE STUDY: REAL-ESTATE WEBSITECASE STUDY: REAL-ESTATE WEBSITE

2 . 1



ML COMPONENT: PREDICTING REAL ESTATE VALUEML COMPONENT: PREDICTING REAL ESTATE VALUE
Given a large database of house sales and statistical/demographic data from

public records, predict the sales price of a house.

f(size, rooms, tax, neighborhood, . . . ) → price

2 . 2



DATA SCIENCE: ITERATIONDATA SCIENCE: ITERATION
AND EXPLORATIONAND EXPLORATION

3 . 1



WHAT'S YOUR PROCESS?WHAT'S YOUR PROCESS?

3 . 2



DATA SCIENCE IS ITERATIVE AND EXPLORATORYDATA SCIENCE IS ITERATIVE AND EXPLORATORY

(Source: Guo. " ." Blog@CACM,
Oct 2013)

Data Science Workflow: Overview and Challenges

3 . 3

https://cacm.acm.org/blogs/blog-cacm/169199-data-science-workflow-overview-and-challenges/fulltext


DATA SCIENCE IS ITERATIVE AND EXPLORATORYDATA SCIENCE IS ITERATIVE AND EXPLORATORY

Martínez-Plumed et al. "
." IEEE Transactions on Knowledge and Data

Engineering (2019).

CRISP-DM Twenty Years Later: From Data Mining
Processes to Data Science Trajectories

3 . 4

https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf


DATA SCIENCE IS ITERATIVE AND EXPLORATORYDATA SCIENCE IS ITERATIVE AND EXPLORATORY

(Microsoft Azure Team, " " Microsoft
Documentation, Jan 2020)
What is the Team Data Science Process?

3 . 5

https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/media/overview/tdsp-lifecycle2.png
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview


DATA SCIENCE IS ITERATIVE AND EXPLORATORYDATA SCIENCE IS ITERATIVE AND EXPLORATORY

Source: Patel, Kayur, James Fogarty, James A. Landay, and Beverly Harrison.
" ." In

Proc. CHI, 2008.
Investigating statistical machine learning as a tool for software development

3 . 6

http://localhost:1948/accuracy-improvements.png
http://www.kayur.org/papers/chi2008.pdf


This figure shows the result from a controlled experiment in which participants had 2 sessions of 2h each to build a
model. Whenever the participants evaluated a model in the process, the accuracy is recorded. These plots show the
accuracy improvements over time, showing how data scientists make incremental improvements through frequent
iteration.

Speaker notes



DATA SCIENCE IS ITERATIVE AND EXPLORATORYDATA SCIENCE IS ITERATIVE AND EXPLORATORY
Science mindset: start with rough goal, no clear specification, unclear
whether possible
Heuristics and experience to guide the process
Try and error, refine iteratively, hypothesis testing
Go back to data collection and cleaning if needed, revise goals

3 . 7



SHARE EXPERIENCE?SHARE EXPERIENCE?

3 . 8



DIFFERENT TRAJECTORIESDIFFERENT TRAJECTORIES

Martínez-Plumed et al. "
." IEEE Transactions on Knowledge and Data

Engineering (2019).

CRISP-DM Twenty Years Later: From Data Mining
Processes to Data Science Trajectories

3 . 9

https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf


DIFFERENT TRAJECTORIESDIFFERENT TRAJECTORIES

From: Martínez-Plumed et al. "
." IEEE Transactions on Knowledge and Data

Engineering (2019).

CRISP-DM Twenty Years Later: From Data Mining
Processes to Data Science Trajectories

3 . 10

https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf


A product to recommend trips connecting tourist attractions in a town may be based on location tracking data
collected by navigation and mapping apps. To build such a project, one might start with a concrete goal in mind
and explore whether enough user location history data is available or can be acquired. One would then go
through traditional data preparation and modeling stages before exploring how to best present the results to
users.
An insurance company tries to improve their model to score the risk of drivers based on their behavior and
sensors in their cars. Here an existing product is to be refined and a better understanding of the business case is
needed before diving into the data exploration and modeling. The team might spend significant time in exploring
new data sources that may provide new insights and may debate the cost and benefits of this data or data
gathering strategy (e.g., installing sensors in customer cars).
A credit card company may want to sell data about what kind of products different people (nationalities) tend to
buy at different times and days in different locations to other companies (retailers, restaurants). They may
explore existing data without yet knowing what kind of data may be of interest to what kind of customers. They
may actively search for interesting narratives in the data, posing questions such as “Ever wondered when the
French buy their food?” or “Which places the Germans flock to on their holidays?” in promotional material.

Speaker notes



COMPUTATIONAL NOTEBOOKSCOMPUTATIONAL NOTEBOOKS

Origins in "literate programming",
interleaving text and code, treating
programs as literature (Knuth'84)
First notebook in Wolfram
Mathematica 1.0 in 1988
Document with text and code cells,
showing execution results under
cells
Code of cells is executed, per cell,
in a kernel
Many notebook implementations
and supported languages, Python
+ Jupyter currently most popular

3 . 11



See also 
Demo with public notebook, e.g., 

Speaker notes

https://en.wikipedia.org/wiki/Literate_programming
https://colab.research.google.com/notebooks/mlcc/intro_to_pandas.ipynb

https://en.wikipedia.org/wiki/Literate_programming
https://colab.research.google.com/notebooks/mlcc/intro_to_pandas.ipynb


NOTEBOOKS SUPPORT ITERATION ANDNOTEBOOKS SUPPORT ITERATION AND
EXPLORATIONEXPLORATION

Quick feedback, similar to REPL
Visual feedback including figures and tables
Incremental computation: reexecuting individual cells
Quick and easy: copy paste, no abstraction needed
Easy to share: document includes text, code, and results

3 . 12



BRIEF DISCUSSION: NOTEBOOK LIMITATIONS ANDBRIEF DISCUSSION: NOTEBOOK LIMITATIONS AND
DRAWBACKS?DRAWBACKS?

3 . 13



SOFTWARE ENGINEERINGSOFTWARE ENGINEERING
PROCESSPROCESS

4 . 1



INNOVATIVE VS ROUTINE PROJECTSINNOVATIVE VS ROUTINE PROJECTS
Like data science tasks, most software projects are innovative

Google, Amazon, Ebay, Netflix
Vehicles and robotics
Language processing, Graphics, AI

Routine (now, not 20 years ago)
E-commerce websites?
Product recommendation? Voice recognition?
Routine gets automated -> innovation cycle

4 . 2



A SIMPLE PROCESSA SIMPLE PROCESS
1. Discuss the software that needs to be written
2. Write some code
3. Test the code to identify the defects
4. Debug to find causes of defects
5. Fix the defects
6. If not done, return to step 1

4 . 3



SOFTWARE PROCESSSOFTWARE PROCESS

Examples?

“The set of activities and associated results that produce a
software product”



4 . 4



Writing down all requirements
Require approval for all changes to requirements
Use version control for all changes
Track all reported bugs
Review requirements and code
Break down development into smaller tasks and schedule and
monitor them
Planning and conducting quality assurance Have daily status meetings
Use Docker containers to push
code between developers and operation

Speaker notes





4 . 5



Visualization following McConnell, Steve. Software project survival guide. Pearson Education, 1998.

Speaker notes





4 . 6



Idea: spent most of the time on coding, accept a little rework

Speaker notes





4 . 7



negative view of process. pure overhead, reduces productive work, limits creativity

Speaker notes





4 . 8



Real experience if little attention is payed to process: increasingly complicated, increasing rework; attempts to rescue by
introducing process

Speaker notes



EXAMPLE OF PROCESS PROBLEMS?EXAMPLE OF PROCESS PROBLEMS?

4 . 9



Collect examples of what could go wrong:

Change Control: Mid-project informal agreement to changes suggested by customer or manager. Project scope expands
25-50%
Quality Assurance: Late detection of requirements and design issues. Test-debug-reimplement cycle limits
development of new features. Release with known defects.
Defect Tracking: Bug reports collected informally, forgotten
System Integration: Integration of independently developed components at the very end of the project. Interfaces out of
sync.
Source Code Control: Accidentally overwritten changes, lost work.
Scheduling: When project is behind,
developers are asked weekly for new estimates.

Speaker notes



TYPICAL PROCESS STEPS (NOT NECESSARILY INTYPICAL PROCESS STEPS (NOT NECESSARILY IN
THIS ORDER)THIS ORDER)

Understand customers, identify what to build, by when, budget
Identify relevant qualities, plan/design system accordingly
Test, deploy, maintain, evolve
Plan, staff, workaround



4 . 10



SURVIVAL MODESURVIVAL MODE
Missed deadlines -> "solo development mode" to meet own deadlines
Ignore integration work
Stop interacting with testers, technical writers, managers, ...

4 . 11



Hypothesis: Process increases flexibility and efficiency + Upfront investment for
later greater returns



4 . 12



ideal setting of little process investment upfront

Speaker notes



4 . 13



Empirically well established rule: Bugs are increasingly expensive to fix the larger the distance between the phase
where they are created vs where they are corrected.

Speaker notes



4 . 14



Complicated processes like these are often what people associate with "process". Software process is needed, but does
not need to be complicated.

Speaker notes



SOFTWARE PROCESSSOFTWARE PROCESS
MODELSMODELS

5 . 1



AD-HOC PROCESSESAD-HOC PROCESSES
1. Discuss the software that needs to be written
2. Write some code
3. Test the code to identify the defects
4. Debug to find causes of defects
5. Fix the defects
6. If not done, return to step 1

5 . 2



WATERFALL MODELWATERFALL MODEL

taming the chaos, understand requirements, plan before coding, remember testing

5 . 3



Although dated, the key idea is still essential -- think and plan before implementing. Not all requirements and design can
be made upfront, but planning is usually helpful.

Speaker notes



RISK FIRST: SPIRAL MODELRISK FIRST: SPIRAL MODEL

1.Determine
objectives

2. Identify and 
resolve risks

3. Development 
and Test

4. Plan the 
next iteration

Progress
Cumulative cost

Requirements
plan

Concept of
operation

Concept of
requirements

Prototype 1 Prototype 2
Operational
prototype

Requirements Draft
Detailed
design

Code

IntegrationIntegration

Test

Implementation

Release

Test plan Verification 
& Validation

Development
plan

Verification 
& Validation

Review

incremental prototypes, starting with most risky components

5 . 4



CONSTANT ITERATION: AGILECONSTANT ITERATION: AGILE

30 days

24 h

Working increment
of the software

Sprint Backlog SprintProduct Backlog

working with customers, constant replanning
(CC BY-SA 4.0, Lakeworks)

5 . 5



SELECTING PROCESS MODELSSELECTING PROCESS MODELS
In slack, vote:
[1] Ad-hoc
[2] Waterfall [3] Spiral [4] Agile

And write a short justification in #lecture



5 . 6



DATA SCIENCE VSDATA SCIENCE VS
SOFTWARE ENGINEERINGSOFTWARE ENGINEERING

6 . 1



DISCUSSION: ITERATION IN NOTEBOOK VS AGILE?DISCUSSION: ITERATION IN NOTEBOOK VS AGILE?

30 days

24 h

Working increment
of the software

Sprint Backlog SprintProduct Backlog

(CC BY-SA 4.0, Lakeworks)

http://localhost:1948/accuracy-improvements.png


6 . 2



There is similarity in that there is an iterative process, but the idea is different and the process model seems mostly
orthogonal
to iteration in data science.
The spiral model prioritizes risk, especially when it is not clear
whether a model is
feasible. One can do similar things in model development, seeing whether it is feasible with data at hand at all and build
an early
prototype, but it is not clear that an initial okay model can be improved
incrementally into a great one later.
Agile
can work with vague and changing requirements, but that again seems
to be a rather orthogonal concern. Requirements
on the product are not so
much unclear or changing (the goal is often clear), but it's not clear
whether and how a model
can solve it.

Speaker notes



POOR SOFTWARE ENGINEERING PRACTICES INPOOR SOFTWARE ENGINEERING PRACTICES IN
NOTEBOOKS?NOTEBOOKS?

*

Little abstraction
Global state
No testing
Heavy copy and paste
Little documentation
Poor version control
Out of order execution
Poor development features (vs IDE)



6 . 3



UNDERSTANDING DATA SCIENTIST WORKFLOWSUNDERSTANDING DATA SCIENTIST WORKFLOWS
Instead of blindly recommended "SE Best Practices" understand context
Documentation and testing not a priority in exploratory phase
Help with transitioning into practice

From notebooks to pipelines
Support maintenance and iteration once deployed
Provide infrastructure and tools

6 . 4



Data
Scientists

Software
Engineers

6 . 5



DATA SCIENCE PRACTICES BY SOFTWAREDATA SCIENCE PRACTICES BY SOFTWARE
ENGINEERSENGINEERS

Many software engineers get involved in data science without explicit
training
Copying from public examples, little reading of documentation
Lack of data visualization/exploration/understanding, no focus on data
quality
Strong preference for code editors, non-GUI tools
Improve model by adding more data or changing models, rarely feature
engineering or debugging
Lack of awareness about overfitting/bias problems, single focus on
accuracy, no monitoring
More system thinking about the product and its needs

6 . 6

http://www.audentia-gestion.fr/MICROSOFT/Machine_Teaching_DIS_18.pdf


INTEGRATED PROCESS FORINTEGRATED PROCESS FOR
AI-ENABLED SYSTEMSAI-ENABLED SYSTEMS

7 . 1



Figure from Dogru, Ali H., and Murat M. Tanik. “A process model for component-oriented software engineering.”
IEEE Software 20, no. 2 (2003): 34–41.

7 . 2





7 . 3





7 . 4



7 . 5





7 . 6



7 . 7



PROCESS FOR AI-ENABLED SYSTEMSPROCESS FOR AI-ENABLED SYSTEMS
Integrate Software Engineering and Data Science processes
Establish system-level requirements (e.g., user needs, safety, fairness)
Inform data science modeling with system requirements (e.g., privacy,
fairness)
Try risky parts first (most likely include ML components; ~spiral)
Incrementally develop prototypes, incorporate user feedback (~agile)
Provide flexibility to iterate and improve
Design system with characteristics of AI component (e.g., UI design,
safeguards)
Plan for testing throughout the process and in production
Manage project understanding both software engineering and data science
workflows

No existing "best practices" or workflow models

7 . 8



TRAJECTORIESTRAJECTORIES
Not every project follows the same development process, e.g.

Small ML addition: Product first, add ML feature later
Research only: Explore feasibility before thinking about a product
Data science first: Model as central component of potential product,
build system around it

Different focus on system requirements, qualities, and upfront planning
Manage interdisciplinary teams and different expectations

7 . 9



7 . 10



TECHNICAL DEBTTECHNICAL DEBT

8 . 1

https://www.monkeyuser.com/2018/tech-debt/


TECHNICAL DEBT METAPHORTECHNICAL DEBT METAPHOR
Analogy to financial debt

Have a benefit now (e.g., progress quickly, release now)
accepting later cost (loss of productivity, e.g., higher
maintenance/operating cost, rework)
debt accumulates and can suffocate project

Ideally a deliberate decision (short term tactical or long term strategic)
Ideally track debt and plan for paying it down

Examples?

8 . 2



Source: Martin Fowler 2009,
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html

8 . 3

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html


TECHNICAL DEBT FROM ML COMPONENTS?TECHNICAL DEBT FROM ML COMPONENTS?
As a group in slack #lecture: Post two plausible examples technical debt in

housing price prediction system:

1. Deliberate, prudent:
2. Reckless, inadvertent:
3. AndrewIds:



Sculley, David, et al. . Advances in Neural Information
Processing Systems. 2015.

Hidden technical debt in machine learning systems

8 . 4

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf


THE NOTEBOOKTHE NOTEBOOK

Jupyter Notebooks are a gift from God to those who work
with data. They allow us to do quick experiments with

Julia, Python, R, and more -- John Paul Ada

8 . 5

https://towardsdatascience.com/no-hassle-machine-learning-experiments-with-azure-notebooks-e1a22e8782c3


Discuss benefits and drawbacks of Jupyter style notebooks

Speaker notes



ML AND TECHNICAL DEBTML AND TECHNICAL DEBT
Often reckless and inadvertent in inexperienced teams
ML can seem like an easy addition, but it may cause long-term costs
Needs to be maintained, evolved, and debugged
Goals may change, environment may change, some changes are subtle

Example problems
Systems and models are tangled and changing one has cascading
effects on the other
Untested, brittle infrastructure; manual deployment
Unstable data dependencies, replication crisis
Data drift and feedback loops
Magic constants and dead experimental code paths

Further reading: Sculley, David, et al. . Advances in Neural
Information Processing Systems. 2015.

Hidden technical debt in machine learning systems

8 . 6

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf


CONTROLLING TECHNICAL DEBT FROM MLCONTROLLING TECHNICAL DEBT FROM ML
COMPONENTSCOMPONENTS

8 . 7



CONTROLLING TECHNICAL DEBT FROM MLCONTROLLING TECHNICAL DEBT FROM ML
COMPONENTSCOMPONENTS

Avoid AI when not needed
Understand and document requirements, design for mistakes
Build reliable and maintainable pipelines, infrastructure, good engineering
practices
Test infrastructure, system testing, testing and monitoring in production
Test and monitor data quality
Understand and model data dependencies, feedback loops, ...
Document design intent and system architecture
Strong interdisciplinary teams with joint responsibilities
Document and track technical debt
...

8 . 8



8 . 9



SUMMARYSUMMARY
Data scientists and software engineers follow different processes
ML projects need to consider process needs of both
Iteration and upfront planning are both important, process models codify
good practices
Deliberate technical debt can be good, too much debt can suffocate a
project
Easy to amount (reckless) debt with machine learning

9



FURTHER READINGFURTHER READING

🗎 Sculley, David, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and
Dan Dennison. " ." In
Advances in neural information processing systems, pp. 2503-2511. 2015.
🗎 Studer, Stefan, Thanh Binh Bui, Christian Drescher, Alexander Hanuschkin,
Ludwig Winkler, Steven Peters, and Klaus-Robert Mueller. "

." arXiv preprint arXiv:2003.05155 (2020).
🗎 Martínez-Plumed, Fernando, Lidia Contreras-Ochando, Cesar Ferri, José
Hernández Orallo, Meelis Kull, Nicolas Lachiche, Maréa José Ramírez
Quintana, and Peter A. Flach. "

." IEEE Transactions on
Knowledge and Data Engineering (2019).

On the process for building software with ML components

Hidden technical debt in machine learning systems

Towards CRISP-
ML (Q): A Machine Learning Process Model with Quality Assurance
Methodology

CRISP-DM Twenty Years Later: From Data
Mining Processes to Data Science Trajectories

10 . 1

https://ckaestne.medium.com/on-the-process-for-building-software-with-ml-components-c54bdb86db24
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://arxiv.org/abs/2003.05155
https://research-information.bris.ac.uk/files/220614618/TKDE_Data_Science_Trajectories_PF.pdf


17-445 Software Engineering for AI-Enabled Systems, Christian Kaestner

FURTHER READING 2FURTHER READING 2
🗎 Patel, Kayur, James Fogarty, James A. Landay, and Beverly Harrison.
"

." In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 667-676. 2008.
🗎 Yang, Qian, Jina Suh, Nan-Chen Chen, and Gonzalo Ramos. "

." In Proceedings of the 2018 Designing Interactive Systems Conference,
pp. 573-584. 2018.
📰 Fowler and Highsmith. 
🕮 Steve McConnell. Software project survival guide. Chapter 3
🕮 Pfleeger and Atlee. Software Engineering: Theory and Practice. Chapter 2
🗎 Kruchten, Philippe, Robert L. Nord, and Ipek Ozkaya. "

." IEEE Software 29, no. 6 (2012): 18-
21.

Investigating statistical machine learning as a tool for software
development

Grounding
interactive machine learning tool design in how non-experts actually build
models

The Agile Manifesto

Technical debt:
From metaphor to theory and practice

10 . 2

http://www.kayur.org/papers/chi2008.pdf
http://www.audentia-gestion.fr/MICROSOFT/Machine_Teaching_DIS_18.pdf
http://agilemanifesto.org/
https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_58818.pdf

