VERSIONING,
PROVENANCE, AND
REPRODUCABILITY

Christian Kaestner

Required reading: Halevy, Alon, Flip Korn, Natalya F. Noy, Christopher Olston, Neoklis Polyzotis, Sudip Roy, and
Steven Euijong Whang. Goods: Organizing google's datasets. In Proceedings of the 2016 International Conference

http://research.google.com/pubs/archive/45390.pdf
https://www.buildingintelligentsystems.com/

LEARNING GOALS

Judge the importance of data provenance, reproducibility and explainability
for a given system

Create documentation for data dependencies and provenance in a given
system

Propose versioning strategies for data and models

Design and test systems for reproducibility

CASE STUDY: CREDIT
SCORING

Tweet

https://twitter.com/dhh/status/1192540900393705474

Tweet

https://twitter.com/dhh/status/1192945019230945280

Customer Data

I

I Purchase Analysis I

/

[Historic Data J

Scorina Model

Cost and Risk Function] (Market Conditions

Credit Limit Model

DEBUGGING?

What went wrong? Where? How to fix?

DEBUGGING QUESTIONS BEYOND
INTERPRETABILITY

Can we reproduce the problem?

What were the inputs to the model?

Which exact model version was used?

What data was the model trained with?

What learning code (cleaning, feature extraction, ML algorithm) was the
model trained with?

Where does the data come from? How was it processed and extracted?
Were other models involved? Which version? Based on which data?

What parts of the input are responsible for the (wrong) answer? How can we
fix the model?

MODEL CHAINING: AUTOMATIC MEME GENERATOR

Search Tweets —»

Obiject Detection ——»

Sentiment Analysis

Overlay Tweet

Version all models involved.

Example adapted from Jon Peck. Chaining machine learning models in production with Algorithmia. Algorithmia

blog, 2019

https://algorithmia.com/blog/chaining-machine-learning-models-in-production-with-algorithmia

COMPLEX MODEL COMPOSITION: ML MODELS FOR
FEATURE EXTRACTION

selfdriving car

Obiect Detection —»

Obiect Trackina

 —

Obiject Motion Prediction

» Traffic Light & Sian Recoanition

Lane Detection

Location Detector

Plannina

Example: Zong, W., Zhang, C., Wang, Z., Zhu, J., & Chen, Q. (2018). Architecture design and implementation of an
autonomous vehicle. IEEE access, 6, 21956-21970.

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8340798

BREAKOUT DISCUSSION: MOVIE PREDICTIONS

Assume you are receiving complains that a child gets
mostly recommendations about R-rated movies

In a group, discuss how you could address this in your own system and post to
#lecture

How could you identify the problematic recommendation(s)?

How could you identify the model that caused the prediction?

How could you identify the training code and data that learned the model?
How could you identify what training data or infrastructure code "caused"
the recommmendations?

K.G Orphanides. Children's YouTube is still churning out blood, suicide and cannibalism. Wired UK, 2018

Kristie Bertucci. 16 NSFW Movies Streaming on Netflix. Gadget Reviews, 2020

https://www.wired.co.uk/article/youtube-for-kids-videos-problems-algorithm-recommend
https://www.gadgetreview.com/16-nsfw-movies-streaming-on-netflix

PROVENANCE TRACKING

Historical record of data and its origin

DATA PROVENANCE

e Track origin of all data
= Collected where?
= Modified by whom, when, why?
= Extracted from what other data or model or algorithm?
e ML models often based on data drived from many sources through many
steps, including other models

{ Historic Data ’ Purchase Analysis I
Scorina Model Cost and Risk Function ’ ‘ Market Conditions ’

Credit Limit Model

EXCURSION: PROVENANCE TRACKING IN
DATABASES

Whenever value is changed, record:

= who changed it

= time of change

= history of previous values

= possibly also justifcation of why
Embedded as feature in some databases, can also be added in business
logic
Immutable data storage keeps history
Possibly using cryptographic methods (e.g., signing documents and
changes)

TRACKING DATA LINEAGE

Document all data sources

Model dependencies and flows

Ideally model all data and processing code
Avoid "visibility debt"

Advanced: Use infrastructure to automatically capture/infer dependencies
and flows (e.g., Goods paper)

http://research.google.com/pubs/archive/45390.pdf

Map Reduce Job

2N

Job level
Data-flow
Task level inment Relationdhips
Data-flow
fesociation {(file,off Jen).rcd} {red (k) {(k.v).red}

{rcd (file, off.len)}

(CCBY-SA 4.0, Skamisetty)

https://en.wikipedia.org/wiki/Data_lineage#/media/File:Map_Reduce_Job_-1.png

FEATURE PROVENANCE

e How are features extracted from raw data
= during training
= during inference
e Has feature extraction changed since the model was trained?

Example?

GOOD PRACTICE: FEATURE STORE

Excapsulate feature extraction as functions

Store centrally for reuse

Use version control

Use same feature code in training and inference code

Advanced: Immutable features -- never change existing features, just add
new ones (e.g., creditscore, creditscore2, creditscore3)

MODEL PROVENANCE

e How was the model trained?
e What data? What library? What hyperparameter? What code?
e Ensemble of multiple models?

Customer Data

I

I Purchase Analysis I

/

[Historic Data J

Scorina Model

Cost and Risk Function] (Market Conditions

Credit Limit Model

IN REAL SYSTEMS: TRACKING PROVENANCE
ACROSS MULTIPLE MODELS

automated meme generator

Obiject Detection ——® Search Tweets —® Sentiment Analvsis
Overlay Tweet

Example adapted from Jon Peck. Chaining machine learning models in production with Algorithmia. Algorithmia
blog, 2019

https://algorithmia.com/blog/chaining-machine-learning-models-in-production-with-algorithmia

COMPLEX MODEL COMPOSITION: ML MODELS FOR
FEATURE EXTRACTION

selfdriving car

Obiect Detection —»

Obiject Trackina

 —

Obiject Motion Prediction

» Traffic Light & Sian Recoanition

Lane Detection

Example: Zong, W., Zhang, C., Wang, Z., Zhu, J., & Chen, Q. (2018). Architecture design and implementation of an

Location Detector

autonomous vehicle. IEEE access, 6, 21956-21970.

Plannina

.11

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8340798

SUMMARY: PROVENANCE

e Data provenance
e Feature provenance
e Model provenance

PRACTICAL DATA AND
MODEL VERSIONING

HOW TO VERSION LARGE DATASETS?

(movie ratings, movie metadata, user data?)

RECALL: EVENT SOURCING

e Append only databases

e Record edit events, never mutate data

e Compute current state from all past events, can reconstruct old state
e For efficiency, take state snapshots

e Similar to traditional database logs

createUser(id=5, name="Christian", dpt="SCS")
updateUser (id=5, dpt="ISR")
deleteUser (1d=5)

VERSIONING DATASETS

Store copies of entire datasets (like Git)

Store deltas between datasets (like Mercurial)

Offsets in append-only database (like Kafka offset)

History of individual database records (e.g. S3 bucket versions)
= some databases specifically track provenance (who has changed

what entry when and how)

= specialized data science tools eg Hangar for tensor data

Version pipeline to recreate derived datasets ("views", different formats)
= e.g. version data before or after cleaning?

Often in cloud storage, distributed
Checksums often used to uniquely identify versions
Version also metadata

https://github.com/tensorwerk/hangar-py

ASIDE: GIT INTERNALS

bak

ladlie
refs/heads/master third commit new.txt

test.txt

\ 1f7a7a
"version 2"
—
cachca o test.txt
refs/heads/test second commit tree
new.txt fa49b0

T vpew file" -

fdfafc da3zof B3baae
first commit tree test.txt = "yersion 1"

Scott Chacon and Ben Straub. Pro Git. 2014

https://git-scm.com/book/en/v2/Git-Internals-Git-References

VERSIONING MODELS

VERSIONING MODELS

e Usually no meaningful delta, versioning as binary objects
e Any system to track versions of blobs

VERSIONING PIPELINES

data
‘j@_’ model

hyperparameters

VERSIONING DEPENDENCIES

Pipelines depend on many frameworks and libraries
Ensure reproducable builds
= Declare versioned dependencies from stable repository (e.g.
requirements.txt + pip)
= Optionally: commit all dependencies to repository ("vendoring")
Optionally: Version entire environment (e.g. Docker container)
Avoid floating versions
Test build/pipeline on independent machine (container, Cl server, ...)

ML VERSIONING TOOLS (SEE MLOPS)

e Tracking data, pipeline, and model versions
e Modeling pipelines: inputs and outputs and their versions
= explicitly tracks how data is used and transformed
e Often tracking also metadata about versions
= Accuracy
= Training time

EXAMPLE: DVC

add images
run -d images -o model.p cnn.py

remote add myrepo s3://mybucket
push

e Tracks models and datasets, built on Git

e Splits learning into steps, incrementalization
e Orchestrates learning in cloud resources

https://dvc.org/

.11

https://dvc.org/

DVC EXAMPLE

stages:
features:
cmd: jupyter nbconvert --execute featurize.ipynb
deps:
- data/clean

params:
- levels.no

outs:
- features
metrics:
- performance. json
training:
desc: Train model with Python
cmd:
- pip install -r requirements.txt

.12

MLFLOW, MODELDB, NEPTUNE, TENSORBOARD,
WEIGHTS & BIASES, COMET.ML

e Instrument pipeline with logging statements
e Track individual runs, hyperparameters used, evaluation results, and model
files

Github Docs

Listing Price Prediction
Experiment ID: 0 Artifact Location: /Users/matei/mlflow/demo/miruns/0
Search Runs: metrics.R2 > 0.24
Filter Params: Filter Metrics: Clear
4 matching runs Download CSV &,
Parameters Metrics

Time User Source Version alpha 11_ratio MAE R2 RMSE

17:37 matei linear.py 3a1995 0.5 0.2 84.27 0.277 158.1

17:37 matei linear.py 3a1995 0.2 0.5 84.08 0.264 159.6

17:37 matei linear.py 3a1995 0.5 0.5 84.12 0.272 158.6

17:37 matei linear.py 3a1995 0 0 84.49 0.249 161.2

Matei Zaharia. Introducing MLflow: an Open Source Machine Learning Platform, 2018

https://databricks.com/blog/2018/06/05/introducing-mlflow-an-open-source-machine-learning-platform.html

MODELDB EXAMPLE

from verta import Client
client = Client("http://localhost:3000")

client.set_project("My first ModelDB project")
client.set_experiment("Default Experiment")

proj
expt

run = client.set_experiment_run("First Run")
run.log_hyperparameters({"regularization" : 0.5})
run.log_dataset_version('"training_and_testing_data'", dataset_ver
modell =

run.log_metric('accuracy', accuracy(modell, validationData))
run.log_model(modell)

GOOGLE'S GOODS

Automatically derive data dependencies from system log files
Track metadata for each table

No manual tracking/dependency declarations needed

Requires homogeneous infrastructure
Similar systems for tracking inside databases, MapReduce, Sparks, etc.

ASIDE: VERSIONING IN NOTEBOOKS WITH
VERDANT

e Data scientists usually do not version notebooks frequently
e Exploratory workflow, copy paste, regular cleaning

Further reading: Kery, M. B., John, B. E., O'Flaherty, P., Horvath, A., & Myers, B. A. (2019, May). Towards effective
foraging by data scientists to find past analysis choices. In Proceedings of the 2019 CHI Conference on Human
Factorsin Computing Systems (pp. 1-13).

https://www.youtube.com/watch?v=LFYmYT7HFSs
http://www.cs.cmu.edu/~marmalade/papers/paper092-Kery-CHI2019.pdf

FROM MODEL VERSIONING TO DEPLOYMENT

e Decide which model version to run where
= automated deployment and rollback (cf. canary releases)
= Kubernetis, Cortex, BentoML, ...
e Track which prediction has been performed with which model version

(logging)

LOGGING AND AUDIT TRACES

e Version everything
e Record every model evaluation with model version
e Append only, backed up

Key goal: If a customer complains about an interaction, can we reproduce the
prediction with the right model? Can we debug the model's pipeline and data?
Can we reproduce the model?

<date>, <model>, <model version>,<feature inputs>,<output>
<date>, <model>, <model version>,<feature inputs>,<output>

<date>, <model>, <model version>,<feature inputs>,<output>

LOGGING FOR COMPOSED MODELS

Obiject Detection ——® Search Tweets —® Sentiment Analvsis

Overlay Tweet

Ensure all predictions are logged

.19

BREAKOUT DISCUSSION: MOVIE PREDICTIONS
(REVISITED)

Assume you are receiving complains that a child gets
mostly recommendations about R-rated movies

Discuss again, updating the previous postin #lecture:

e How would you identify the model that caused the prediction?
e How would you identify the code and dependencies that trained the model?
e How would you identify the training data used for that model?

K.G Orphanides. Children's YouTube is still churning out blood, suicide and cannibalism. Wired UK, 2018

Kristie Bertucci. 16 NSFW Movies Streaming on Netflix. Gadget Reviews, 2020

https://www.wired.co.uk/article/youtube-for-kids-videos-problems-algorithm-recommend
https://www.gadgetreview.com/16-nsfw-movies-streaming-on-netflix

REPRODUCABILITY

DEFINITIONS

e Reproducibility: the ability of an experiment to be repeated with minor
differences from the original experiment, while achieving the same
qualitative result

e Replicability: ability to reproduce results exactly, achieving the same
quantitative result; requires determinism

e |nscience, reproducing results under different conditions are valuable to
gain confidence
= "conceptual replication": evaluate same hypothesis with different
experimental procedure or population
= many different forms distinguished "... replication" (e.g. close, direct,
exact, independent, literal, nonexperiemental, partial, retest,
sequential, statistical, varied, virtual)

Juristo, Natalia, and Omar S. Gomez. "Replication of software engineering experiments." In Empirical software
engineering and verification, pp. 60-88. Springer, Berlin, Heidelberg, 2010.

https://www.researchgate.net/profile/Omar_S_Gomez/publication/221051163_Replication_of_Software_Engineering_Experiments/links/5483c83c0cf25dbd59eb1038/Replication-of-Software-Engineering-Experiments.pdf

REPRODUCIBILITY OF NOTEBOOKS

e 2019 Study of 1.4M notebooks on GitHub:
m 21% had unexecuted cells
= 36% executed cells out of order
m 149% declare dependencies
m success rate for installing dependencies <40% (version issues, missing files)
= notebook execution failed with exception in >40% (often ImportError, NameError,
FileNotFoundError)
= only 24% finished execution without problem, of those 75% produced different
results
e 2020 Study of 936 executable notebooks:
40% produce different results due to nondeterminism (randomness without seed)
12% due to time and date
51% due to plots (different library version, APl misuse)
2% external inputs (e.g. Weather API)
27% execution environment (e.g., Python package versions)

Pimentel, Joao Felipe, Leonardo Murta, Vanessa Braganholo, and Juliana Freire. "A large-scale study about quality and reproducibility of
jupyter notebooks." In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), pp. 507-517. IEEE, 2019.

Wang, Jiawei, K. U. 0. Tzu-Yang, Li Li, and Andreas Zeller. "Assessing and restoring reproducibility of Jupyter notebooks." In 2020 35th
IEEE/ACM international conference on automated software engineering (ASE), pp. 138-149. IEEE, 2020.

PRACTICAL REPRODUCABILITY

* Ability to generate the same research results or predictions
e Recreate model from data

e Requires versioning of data and pipeline (incl. hyperparameters and
dependencies)

NONDETERMINISM

Model inference almost always deterministic for a given model
Some machine learning algorithms are nondeterministic
= Nondeterminism in neural networks initialized from random initial
weights
= Nondeterminism from distributed learning
= Nondeterminism in random forest algorithms
= Determinism in linear regression and decision trees
Many notebooks and pipelines contain nondeterminism
= Depend on snapshot of online data (e.g., stream)
= Depend on current time
= |nitialize random seed
= Different memory addresses for figures
Different library versions installed on the machine may affect results

RECOMMENDATIONS FOR REPRODUCIBILITY

Version pipeline and data (see above)

Document each step
= document intention and assumptions of the process (not just results)
= e.g.,,document why data is cleaned a certain way
= e.g., document why certain parameters chosen

Ensure determinism of pipeline steps (-> test)

Modularize and test the pipeline

Containerize infrastructure -- see MLOps

DEBUGGING AND FIXING
MODELS

See also Hulten. Building Intelligent Systems. Chapter 21

See also Nushi, Besmira, Ece Kamar, Eric Horvitz, and Donald Kossmann. "On human intellect and machine
failures: troubleshooting integrative machine learning systems." In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, pp. 1017-1025. 2017.

http://erichorvitz.com/human_repair_AI_pipeline.pdf

RECALL: COMPOSING MODELS: ENSEMBLE AND

METAMODELS

Ensemble Metamodel / model stacking
Model 1 % p, Model 1 % p,
Meta-
Input Model 2 % p, p Input Model 2 % p, model - p
avg./
Model 3 % p, mode/ Model 3 % p,
max/...

Legend: I:I machine-learned model, ®non-ML aggregation function, P prediction

RECALL: COMPOSING MODELS: DECOMPOSING
THE PROBLEM, SEQUENTIAL

Image Visual Language Caption

Input Detector P1 Model ! Reranker P
objects+ captions best
confidence T caption

RECALL: COMPOSING MODELS: CASCADE/TWO-
PHASE PREDICTION

Instrument
Br— 1 Gl | pd
. Detector
et | et L [o cond
model
small binary
on-device model no instrument

I

DECOMPOSING THE IMAGE CAPTIONING
PROBLEM?

Speaker notes

Using insights of how humans reason: Captions contain important objects in the image and their relations. Captions
follow typical language/grammatical structure

STATE OF THE ART DECOMPOSITION (IN 2015)

#1
A man flying
through the air
on a snowboard.
A
snowboard, 0.96 A man flying through
snow, 0.94 the air on a snowboard.
man, 0.89 "
mountain, 0.87 A man riding skis
skis, 0.71 on a snowy mountain. ,
Visual 1/0 N Language 1/0 N Caption
Detector Model Reranker

http://erichorvitz.com/human_repair_AI_pipeline.pdf

Example and image from: Nushi, Besmira, Ece Kamar, Eric Horvitz, and Donald Kossmann. "On human intellect
and machine failures: troubleshooting integrative machine learning systems." In Proc. AAAI. 2017.

http://erichorvitz.com/human_repair_AI_pipeline.pdf

BLAME ASSIGNMENT?

Visual Language Caption
Detector Model Reranker
l.teddy 0.92 1. A teddy 1. A blender
2.0n 0.92 bear. sitting on top
3. cake 0.90 2. A stuffed of a cake.
4. bear 0.87 bear. 2. A teddy
5. stuffed 0.85 bear in front
15. blender 0.57 108. A of a birthday
blender cake.
. 3. A cake
sitting on top .
e sitting on top
of a blender.

Example and image from: Nushi, Besmira, Ece Kamar, Eric Horvitz, and Donald Kossmann. "On human intellect
and machine failures: troubleshooting integrative machine learning systems." In Proc. AAAI. 2017.

http://erichorvitz.com/human_repair_AI_pipeline.pdf

NONMONOTONIC ERRORS

Visual Fixed Visual
Detector Detector
teddy 0.92 teddy 1.0
computer 0.91 bear 1.0
bear 0.90 wearing 1.0
wearing .87 keyboard 1.0
keyboard (.84 glasses 1.0
glasses 0.63
1. a person wearing
1. A teddy bear glasses and holding
sitting on top a teddy bear sitting
of a computer. on top of a keyboard.

Example and image from: Nushi, Besmira, Ece Kamar, Eric Horvitz, and Donald Kossmann. "On human intellect
and machine failures: troubleshooting integrative machine learning systems." In Proc. AAAI. 2017.

http://erichorvitz.com/human_repair_AI_pipeline.pdf

CHASING BUGS

Update, clean, add, remove data
Change modeling parameters

Add regression tests
Fixing one problem may lead to others, recognizable only later

PARTITIONING
CONTEXTS

Separate models for different
subpopulations

Potentially used to address
fairness issues

ML approaches typically partition
internally already

input

l

pick model

modell

N

Y T

model2

model3

—

ves/no

.10

OVERRIDES

e Hardcoded heuristics (usually
created and maintained by
humans) for special cases

* Blocklists, guardrails

e Potential neverending attempt to
fix special cases

input

l

blocklist

/

)

model

l

aquardrail

i

no

Ves

.11

IDEAS?

.12

SUMMARY

Provenance is important for debugging and accountability
Data provenance, feature provenance, model provenance
Reproducability vs replicability
Version everything

= Strategies for data versioning at scale

= Version the entire pipeline and dependencies

= Adopt a pipeline view, modularize, automate

= Containers and MLOps, many tools
Strategies to fix models

