SAFETY

Eunsuk Kang

Required Reading: Practical Solutions for Machine Learning Safety in Autonomous Vehicles. S. Mohseni et al., SafeAI Workshop@AAAI (2020).

LEARNING GOALS

- Understand safety concerns in traditional and AI-enabled systems
- Apply hazard analysis to identify risks and requirements and understand their limitations
- Discuss ways to design systems to be safe against potential failures
- Suggest safety assurance strategies for a specific project
- Describe the typical processes for safety evaluations and their limitations

SAFETY

- Prevention of a system failure or malfunction that results in:
 - Death or serious injury to people
 - Loss or severe damage to equipment/property
 - Harm to the environment or society

- Prevention of a system failure or malfunction that results in:
 - Death or serious injury to people
 - Loss or severe damage to equipment/property
 - Harm to the environment or society
- Safety is a system concept
 - Can't talk about software being "safe"/"unsafe" on its own
 - Safety is defined in terms of its effect on the environment

- Prevention of a system failure or malfunction that results in:
 - Death or serious injury to people
 - Loss or severe damage to equipment/property
 - Harm to the environment or society
- Safety is a system concept
 - Can't talk about software being "safe"/"unsafe" on its own
 - Safety is defined in terms of its effect on the environment
- Safety != Reliability
 - Can build safe systems from unreliable components (e.g. redundancies)
 - Reliable components may be unsafe (e.g. stronger gas tank causes more severe damage in incident)

SAFETY OF AI-ENABLED SYSTEMS

Tweet

SAFETY OF AI-ENABLED SYSTEMS

Tweet

SAFETY IS A BROAD CONCEPT

- Not just physical harms/injuries to people
- Includes harm to mental health
- Includes polluting the environment, including noise pollution
- Includes harm to society, e.g. poverty, polarization

CASE STUDY: SELF-DRIVING CAR

HOW DID TRADITIONAL VEHICLES BECOME SAFE?



 National Traffic & Motor Safety Act (1966): Mandatory design changes (head rests, shatter-resistant windshields, safety belts); road improvements (center lines, reflectors, guardrails)

AUTONOMOUS VEHICLES: WHAT'S DIFFERENT?

Ford Taps the Brakes on the Arrival of Self-Driving Cars

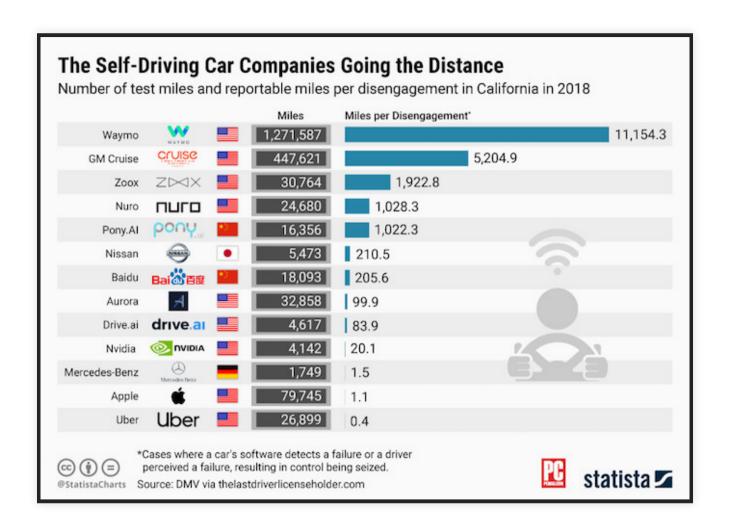
HYPE CYCLE -

The hype around driverless cars came crashing down in 2018

Top Toyota expert throws cold water on the driverless car hype

- In traditional vehicles, humans ultimately responsible for safety
 - Some safety features (lane keeping, emergency braking) designed to help & reduce risks
 - i.e., safety = human control + safety mechanisms
- Use of AI in autonomous vehicles: Perception, control, routing, etc.,
 - Inductive training: No explicit requirements or design insights
 - Can ML achieve safe design solely through lots of data?

DEMONSTRATING SAFETY



More miles tested => safer?

CHALLENGE: EDGE/UNKNOWN CASES

- Gaps in training data; ML will unlikely be able to cover all unknown cases
- Why is this a unique problem for AI? What about humans?

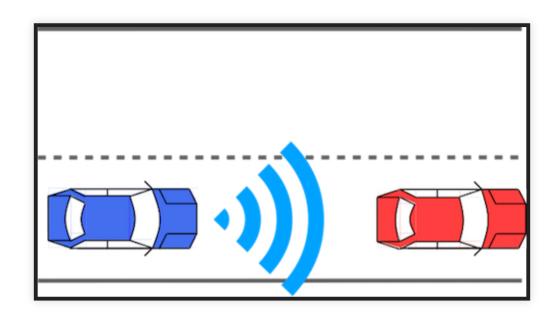
APPROACH FOR DEMONSTRATING SAFETY

- Safety Engineering: An engineering discipline which assures that engineered systems provide acceptable levels of safety.
- Typical safety engineering process:
 - Identify relevant hazards & safety requirements
 - Identify potential root causes for hazards
 - For each hazard, develop a mitigation strategy
 - Provide evidence that mitigations are properly implemented

HAZARD ANALYSIS

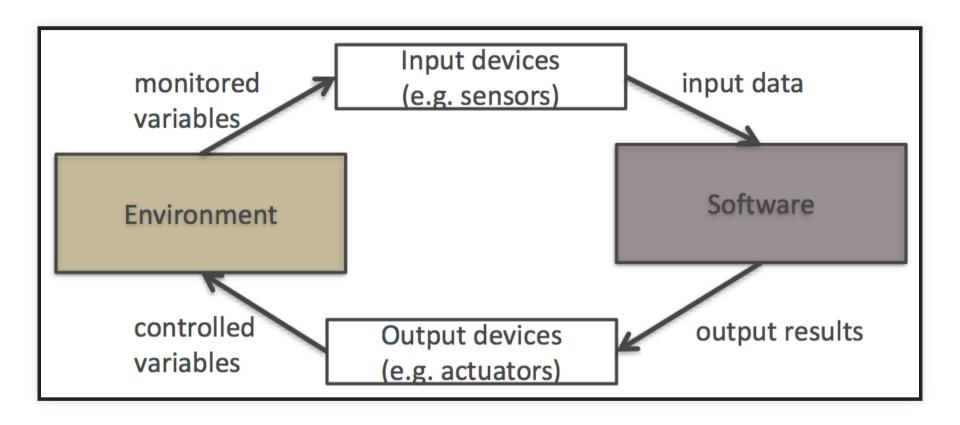
(system level!)

WHAT IS HAZARD ANALYSIS?



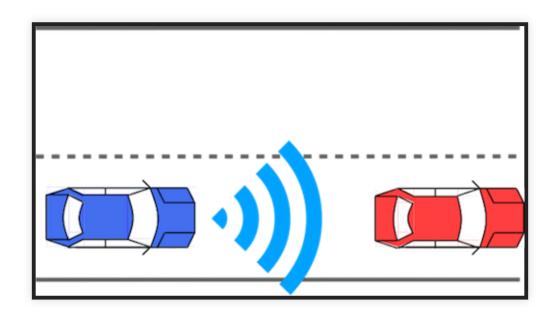
- Hazard: A condition or event that may result in undesirable outcome
 - e.g., "Ego vehicle is in risk of a collision with another vehicle."
- Safety requirement: Intended to eliminate or reduce one or more hazards
 - "Ego vehicle must always maintain some minimum safe distance to the leading vehicle."
- Hazard analysis: Methods for identifying hazards & potential root causes

RECALL: WORLD VS MACHINE



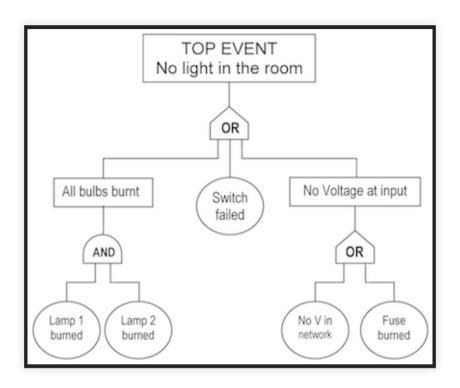
- Software is not safe/unsafe on its own; control signals it generates may be
- The root of unsafety is often in wrong requirements & environmental assumptions

RECALL: REQUIREMENT VS SPECIFICATION



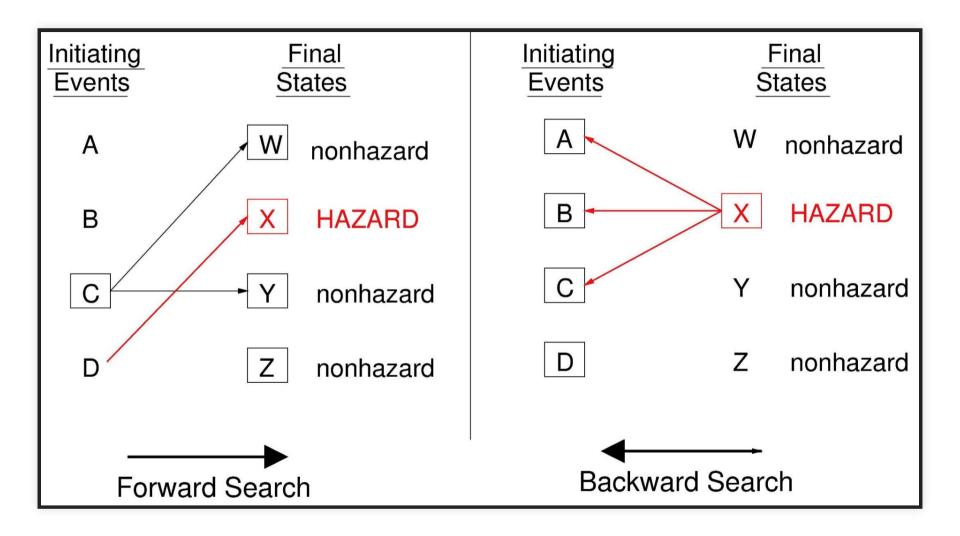
- **REQ**: Ego vehicle must always maintain some minimum safe distance to the leading vehicle.
- **ENV**: Engine is working as intended; sensors are providing accurate information about the leading car (current speed, distance...)
- **SPEC**: Based on the current sensor readings, the controller must issue an actuator command to accelerate/decelerate the vehicle as needed.

REVIEW: FAULT TREE ANALYSIS (FTA)



- Top-down, **backward** search method for root cause analysis
 - Start with a given hazard (top event), derive a set of components faults (basic events)
 - Compute minimum cutsets as potential root causes
 - Q. How to identify relevant hazards (top events) in the first place?

FORWARD VS BACKWARD SEARCH



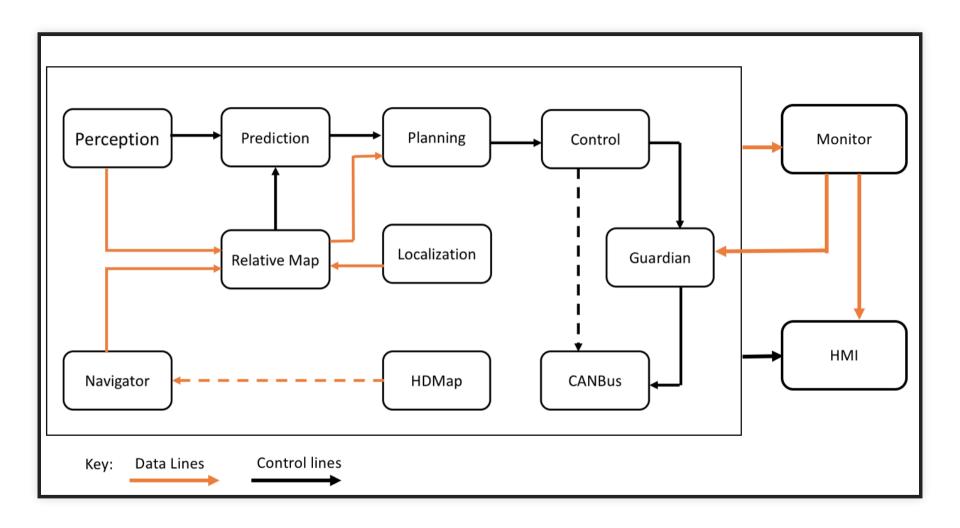
FAILURE MODE AND EFFECTS ANALYSIS (FMEA)

Component	Failure Mode	Failure Effects	Sev	Potential Causes	Occ	Det Recommended Action	RPN
		Se	enso	rs			
				Driving at night, poor weather		If confidence in sensor data is	
				(heavy rain, snow, or fog), dirt or		low, pull over or alert human	
	Poor visibility		5	obstruction over lens	10	2 driver to take control	100
]		Manufacturing fault, or at end of life			
Vision-based camera	Hardware failure		5	cycle	4	4 Annual inspection	80
]				If confidence in sensor data is	
				Poor weather (heavy rain, snow, or		low, pull over or alert human	
	Poor visibility		5	fog), dirt or obstruction over sensor	8	2 driver to take control	80
]		Other AVs in the area using		Laser signal should be coded	
	LIDAR interference	Outcome depends on	5	LIDAR	10	2 with ID to prevent interference	100
		whether other sensors				Measurement uncertainty should	
	Positional error (bias error	remain operational and how				be conveyed to decision-making	
	or noise)	the controller compensates	4	Intrinsic to sensor	10	2 algorithm	80
		for the loss of data. Collision		Manufacturing fault, or at end of life			
LIDAR	Hardware failure	is possible.	5	cycle	3	4 Annual inspection	60

- A **forward search** technique to identify potential hazards
- For each component, (1) enumerate possible *failure modes* (2) possible safety impact (*effects*) and (3) mitigation strategies.
- Widely used in aeronautics, automotive, healthcare, food services, semiconductor processing, and (to some extent) software

Image: David Robert Beachum. *Methods for asessing the safety of autonomous vehicles*. University of Texas Theses and Dissertations (2019).

FMEA EXAMPLE: AUTONOMOUS VEHICLES



• Architecture of the Apollo autonomous driving platform

FMEA EXAMPLE: AUTONOMOUS VEHICLES

Component	Failure Mode	Failure Effects	Detection	Mitigation
Perception	?	?	?	?
Perception	?	?	?	?
LIDAR	Mechanical failure	Loss of advanced driving functions	Sensor health monitor	Switch to manual mode
•••	•••	•••	•••	•••

FMEA EXAMPLE: AUTONOMOUS VEHICLES

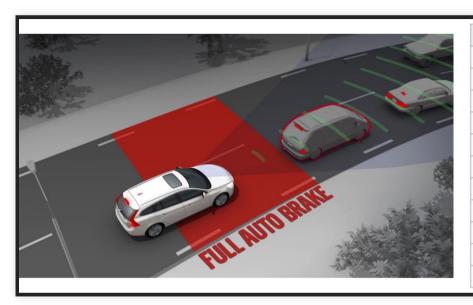
Component	Failure Mode	Failure Effects	Detection	Mitigation
Perception	Failure to detect an object	Risk of collision	Secondary model	Slow down or switch to manual mode
Perception	Detected but misclassified	11	Low model confidence	11
LIDAR	Mechanical failure	Loss of advanced driving functions	Sensor health monitor	Switch to manual mode
•••	•••	•••	•••	•••

HAZARD AND OPERABILITY STUDY (HAZOP)

Guide Word	Meaning
NO OR NOT	Complete negation of the design intent
MORE	Quantitative increase
LESS	Quantitative decrease
AS WELL AS	Qualitative modification/increase
PART OF	Qualitative modification/decrease
REVERSE	Logical opposite of the design intent
OTHER THAN / INSTEAD	Complete substitution
EARLY	Relative to the clock time
LATE	Relative to the clock time
BEFORE	Relating to order or sequence
AFTER	Relating to order or sequence

- A **forward search** method to identify potential hazards
- For each component, use a set of guide words to generate possible deviations from expected behavior
- Consider the impact of each generated deviation: Can it result in a systemlevel hazard?

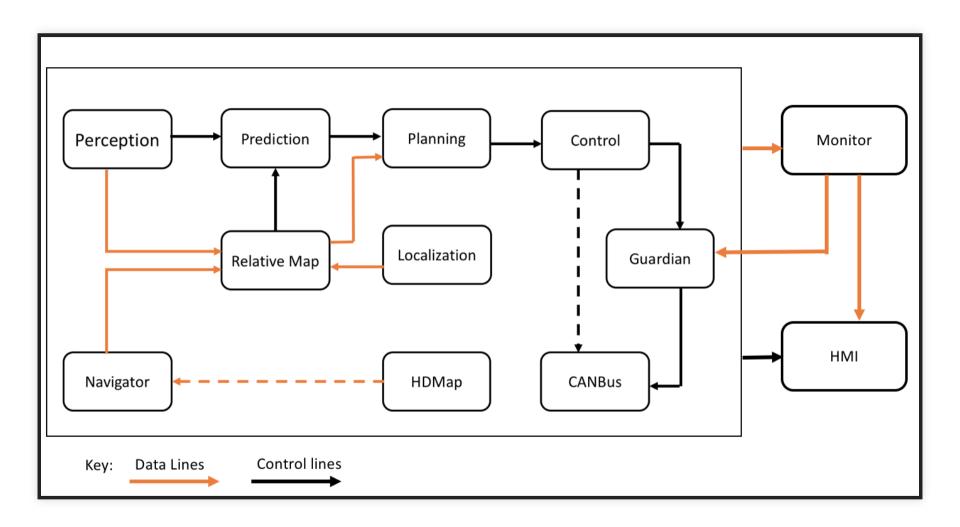
HAZOP EXAMPLE: EMERGENCY BRAKING (EB)



Guide Word	Meaning
NO OR NOT	Complete negation of the design intent
MORE	Quantitative increase
LESS	Quantitative decrease
AS WELL AS	Qualitative modification/increase
PART OF	Qualitative modification/decrease
REVERSE	Logical opposite of the design intent
OTHER THAN / INSTEAD	Complete substitution
EARLY	Relative to the clock time
LATE	Relative to the clock time
BEFORE	Relating to order or sequence
AFTER	Relating to order or sequence

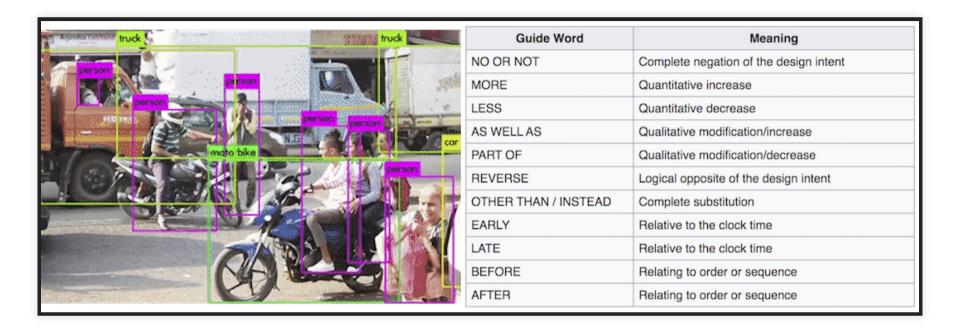
- Specification: EB must apply a maximum braking command to the engine.
 - NO OR NOT: EB does not generate any braking command.
 - LESS: EB applies less than max. braking.
 - LATE: EB applies max. braking but after a delay of 2 seconds.
 - **REVERSE**: EB generates an acceleration command instead of braking.
 - **BEFORE**: EB applies max. braking before a possible crash is detected.

HAZOP EXERCISE: AUTONOMOUS VEHICLES



• Architecture of the Apollo autonomous driving platform

BREAKOUT: HAZOP ON PERCEPTION



- Type into Slack #lecture:
 - What is the specification of the perception component?
 - Use HAZOP to answer:
 - What are possible deviations from the specification?
 - What are potential hazards resulting from these deviations?

HAZOP: BENEFITS & LIMITATIONS

Guide Word	Meaning
NO OR NOT	Complete negation of the design intent
MORE	Quantitative increase
LESS	Quantitative decrease
AS WELL AS	Qualitative modification/increase
PART OF	Qualitative modification/decrease
REVERSE	Logical opposite of the design intent
OTHER THAN / INSTEAD	Complete substitution
EARLY	Relative to the clock time
LATE	Relative to the clock time
BEFORE	Relating to order or sequence
AFTER	Relating to order or sequence

- Easy to use; encourages systematic reasoning about component faults
- Can be combined with FTA/FMEA to generate faults (i.e., basic events in FTA)
- Potentially labor-intensive; relies on engineer's judgement
- Does not guarantee to find all hazards (but also true for other techniques)

REMARKS: HAZARD ANALYSIS

- None of these methods guarantee completeness
 - You may still be missing important hazards, failure modes
- Intended as structured approaches to thinking about failures
 - But cannot replace human expertise and experience
- When available, leverage prior domain knowledge
 - Safety standards: A set of design and process guidelines for establishing safety
 - ISO 26262, ISO 21448, IEEE P700x, etc.,
 - Most do not consider AI; new standards being developed (e.g., UL 4600)

MODEL ROBUSTNESS

DEFINING ROBUSTNESS:

- A prediction for input x is robust if the outcome is stable under minor perturbations to the input:
 - ullet $\forall x'. d(x,x') < \epsilon \Rightarrow f(x) = f(x')$
 - distance function d and permissible distance ϵ depends on the problem domain!
- A model is said to be robust if most predictions are robust
- An important concept in safety and security settings
 - In safety, perturbations tend to be random or predictable (e.g., sensor noise due to weather conditions)
 - In security, perturbations are intentionally crafted (e.g., adversarial attacks)
 - In some domains, both safety and security matter: Examples?

ROBUSTNESS AND DISTANCE FOR IMAGES

- Slight rotation, stretching, or other transformations
- Change many pixels minimally (below human perception)
- Change only few pixels
- Change most pixels mostly uniformly, e.g., brightness

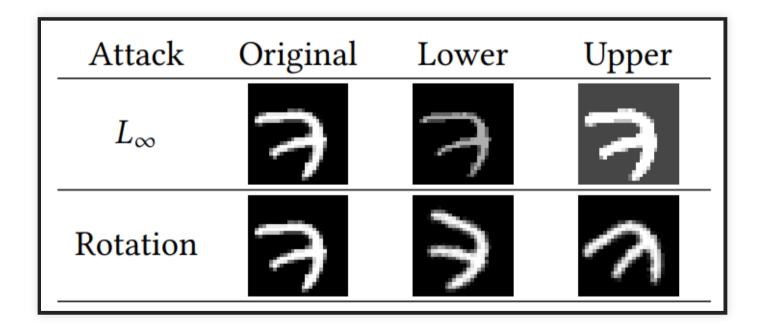


Image: An abstract domain for certifying neural networks. Gagandeep et al., POPL (2019).

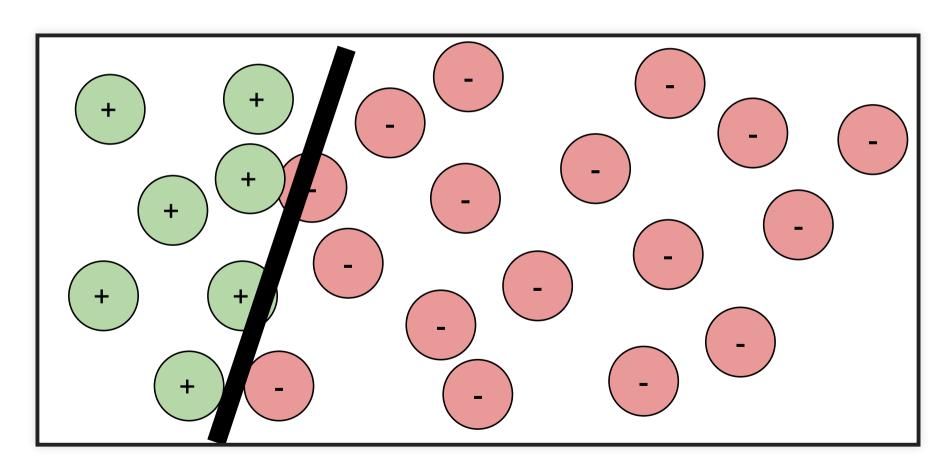
ROBUSTNESS IN A SAFETY SETTING

- Does the model reliably detect stop signs?
- Also in poor lighting? In fog? With a tilted camera? Sensor noise?
- With stickers taped to the sign? (adversarial attacks)

Image: David Silver. Adversarial Traffic Signs. Blog post, 2017

NO MODEL IS FULLY ROBUST

- Every useful model has at least one decision boundary (ideally at the real task decision boundary)
- Predictions near that boundary are not (and should not) be robust



EVALUATING ROBUSTNESS

• Lots of on-going research (especially for DNNs)

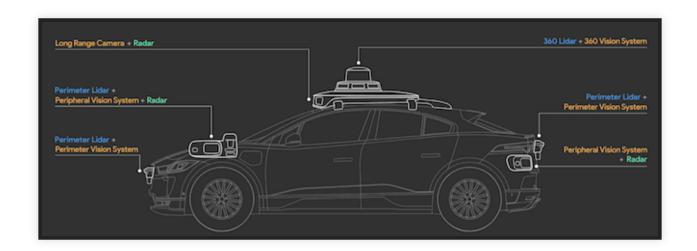
EVALUATING ROBUSTNESS

- Lots of on-going research (especially for DNNs)
- Formal verification
 - Constraint solving or abstract interpretation over computations in neuron activations
 - Conservative abstraction, may label robust inputs as not robust
 - Currently not very scalable
 - Example: An abstract domain for certifying neural networks.
 Gagandeep et al., POPL (2019).

EVALUATING ROBUSTNESS

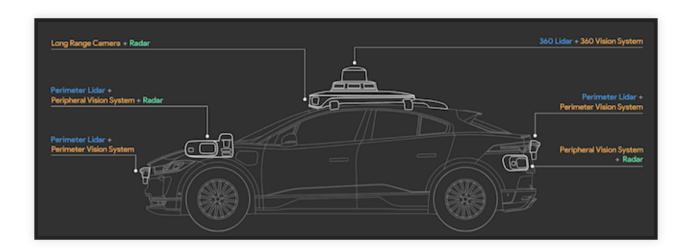
- Lots of on-going research (especially for DNNs)
- Formal verification
 - Constraint solving or abstract interpretation over computations in neuron activations
 - Conservative abstraction, may label robust inputs as not robust
 - Currently not very scalable
 - Example: An abstract domain for certifying neural networks.
 Gagandeep et al., POPL (2019).
- Sampling
 - Sample within distance, compare prediction to majority prediction
 - Probabilistic guarantees possible (with many queries, e.g., 100k)
 - Example: Certified adversarial robustness via randomized smoothing.
 Cohen, Rosenfeld, and Kolter, ICML (2019).

IMPROVING ROBUSTNESS FOR SAFETY



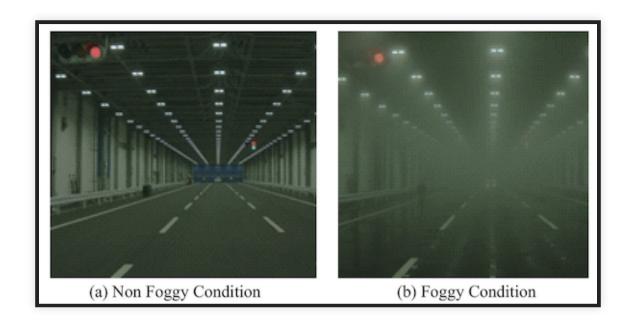
- Robustness checking at inference time
 - Handle inputs with non-robust predictions differently (e.g. discard or output low confidence score)
 - Downside: Significantly raises cost of prediction; may not be suitable for time-sensitive applications (e.g., self-driving cars)

IMPROVING ROBUSTNESS FOR SAFETY



- Robustness checking at inference time
 - Handle inputs with non-robust predictions differently (e.g. discard or output low confidence score)
 - Downside: Significantly raises cost of prediction; may not be suitable for time-sensitive applications (e.g., self-driving cars)
- Design mechanisms
 - Deploy redundant components for critical tasks
 - Ensemble learning: Combine models with different biases
 - Multiple, independent sensors (e.g., LiDAR + radar + cameras)

IMPROVING ROBUSTNESS FOR SAFETY

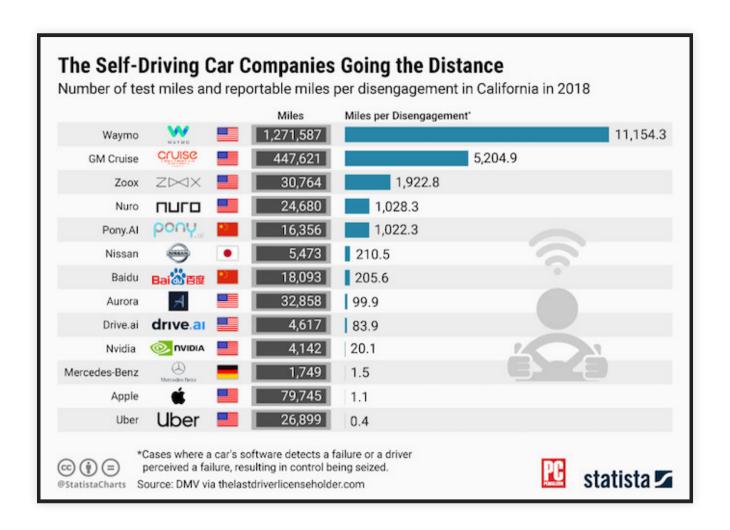


- Learning more robust models
 - Think about domain-specific scenarios that might result in perturbations to model input (e.g., fogs, snow, sensor noise)
 - Curate data for those abnormal scenarios
 - Augment training data with transformed inputs (but same label)

Image: Automated driving recognition technologies for adverse weather conditions. Yoneda et al., IATSS Research (2019).

SAFETY CASES

DEMONSTRATING SAFETY



How do we demonstrate to a third-party that our system is safe?

• Guidelines & recommendations for achieving an acceptable level of safety

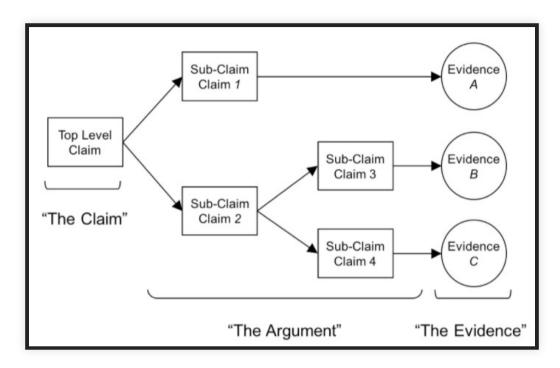
- Guidelines & recommendations for achieving an acceptable level of safety
- Examples: DO-178C (airborne systems), ISO 26262 (automotive), IEC 62304 (medical software), Common Criteria (security)

- Guidelines & recommendations for achieving an acceptable level of safety
- Examples: DO-178C (airborne systems), ISO 26262 (automotive), IEC 62304 (medical software), Common Criteria (security)
- Typically, prescriptive & process-oriented
 - Recommends use of certain development processes
 - Requirements specification, design, hazard analysis, testing, verification, configuration management, etc.,

- Guidelines & recommendations for achieving an acceptable level of safety
- Examples: DO-178C (airborne systems), ISO 26262 (automotive), IEC 62304 (medical software), Common Criteria (security)
- Typically, prescriptive & process-oriented
 - Recommends use of certain development processes
 - Requirements specification, design, hazard analysis, testing, verification, configuration management, etc.,
- Limitations
 - Most not designed to handle ML systems (exception: UL 4600)
 - Costly to satisfy & certify, but effectiveness unclear (e.g., many FDAcertified products recalled due to safety incidents)

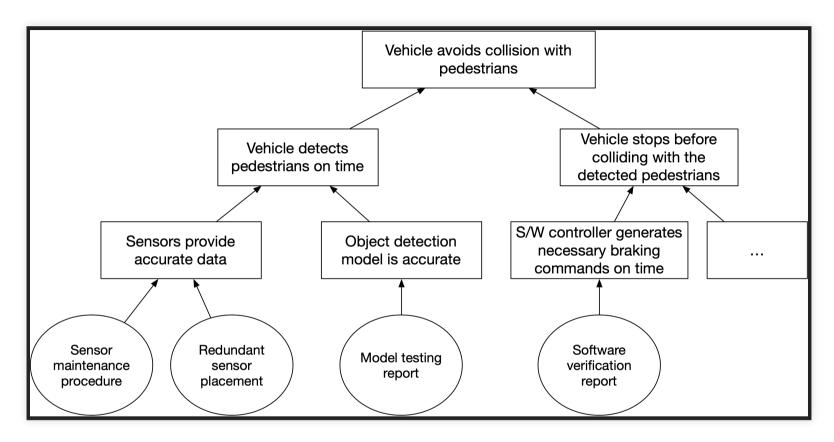
- Guidelines & recommendations for achieving an acceptable level of safety
- Examples: DO-178C (airborne systems), ISO 26262 (automotive), IEC 62304 (medical software), Common Criteria (security)
- Typically, prescriptive & process-oriented
 - Recommends use of certain development processes
 - Requirements specification, design, hazard analysis, testing, verification, configuration management, etc.,
- Limitations
 - Most not designed to handle ML systems (exception: UL 4600)
 - Costly to satisfy & certify, but effectiveness unclear (e.g., many FDAcertified products recalled due to safety incidents)
- Good processes are important, but not sufficient; provides only indirect evidence for system safety

ASSURANCE (SAFETY) CASES



- An explicit argument that a system achieves a desired safety requirement, along with supporting evidence
- Structure:
 - Argument: A top-level claim decomposed into multiple sub-claims
 - Evidence: Testing, software analysis, formal verification, inspection, expert opinions, design mechanisms...

ASSURANCE CASES: EXAMPLE

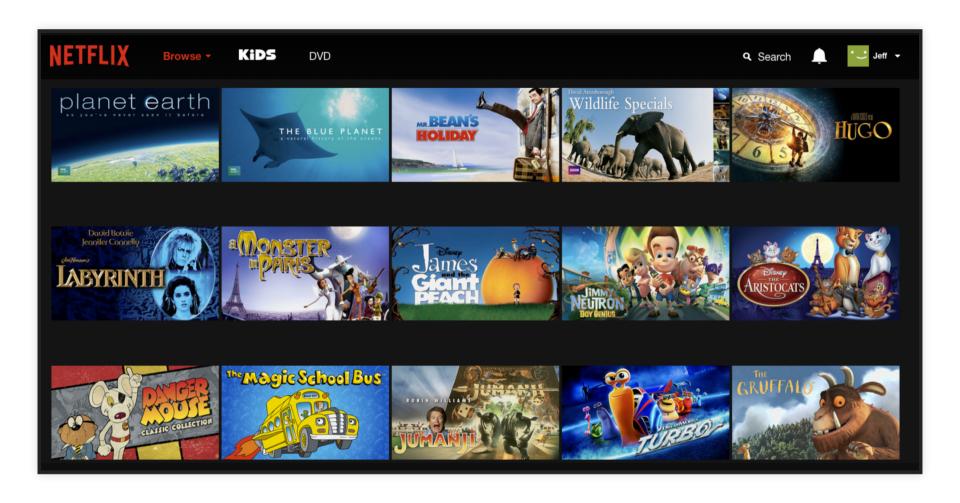


- Questions to think about:
 - Do sub-claims imply the parent claim?
 - Am I missing any sub-claims?
 - Is the evidence strong enough to discharge a leaf claim?

ASSURANCE CASES: EXAMPLE

Aurora Safety Case

EXERCISE: ASSURANCE CASE FOR RECOMMENDER



Build a safety case to argue that your movie recommendation system provides at least 95% availability. Include evidence to support your argument.

- Provides an explicit structure to the safety argument
 - Easier to navigate, inspect, and refute for third-party auditors
 - Provides traceability between system-level claims & low-level evidence
 - Can also be used for other types of system quality (security, reliability, etc.,)

- Provides an explicit structure to the safety argument
 - Easier to navigate, inspect, and refute for third-party auditors
 - Provides traceability between system-level claims & low-level evidence
 - Can also be used for other types of system quality (security, reliability, etc.,)
- Challnges and pitfalls

- Provides an explicit structure to the safety argument
 - Easier to navigate, inspect, and refute for third-party auditors
 - Provides traceability between system-level claims & low-level evidence
 - Can also be used for other types of system quality (security, reliability, etc.,)
- Challnges and pitfalls
 - Informal links between claims & evidence
 - o e.g., Does the sub-claims actually imply the top-level claim?

- Provides an explicit structure to the safety argument
 - Easier to navigate, inspect, and refute for third-party auditors
 - Provides traceability between system-level claims & low-level evidence
 - Can also be used for other types of system quality (security, reliability, etc.,)
- Challnges and pitfalls
 - Informal links between claims & evidence
 - e.g., Does the sub-claims actually imply the top-level claim?
 - Effort in constructing the case & evidence
 - How much evidence is enough?

- Provides an explicit structure to the safety argument
 - Easier to navigate, inspect, and refute for third-party auditors
 - Provides traceability between system-level claims & low-level evidence
 - Can also be used for other types of system quality (security, reliability, etc.,)
- Challnges and pitfalls
 - Informal links between claims & evidence
 - e.g., Does the sub-claims actually imply the top-level claim?
 - Effort in constructing the case & evidence
 - How much evidence is enough?
 - System evolution
 - If system changes, must reproduce the case & evidence

- Provides an explicit structure to the safety argument
 - Easier to navigate, inspect, and refute for third-party auditors
 - Provides traceability between system-level claims & low-level evidence
 - Can also be used for other types of system quality (security, reliability, etc.,)
- Challnges and pitfalls
 - Informal links between claims & evidence
 - e.g., Does the sub-claims actually imply the top-level claim?
 - Effort in constructing the case & evidence
 - How much evidence is enough?
 - System evolution
 - If system changes, must reproduce the case & evidence
- Tools for building & analyzing safety cases available
 - e.g., ASCE/GSN from Adelard
 - But ultimately, can't replace domain knowledge & critical thinking

DESIGNING FOR SAFETY

REVIEW: ELEMENTS OF SAFE DESIGN

(See Mitigation Strategies from the Lecture on Risks)

- Assume: Components will fail at some point
- Goal: Minimize the impact of failures
- Detection
 - Monitoring
- Response
 - Graceful degradation (fail-safe)
 - Redundancy (fail over)
- Containment
 - Decoupling & isolation

SAFETY ASSURANCE WITH ML COMPONENTS

- Consider ML components as unreliable, at most probabilistic guarantees
- Testing, testing (+ simulation)
 - Focus on data quality & robustness
- Adopt a system-level perspective!
- Consider safe system design with unreliable components
 - Traditional systems and safety engineering
 - Assurance cases
- Understand the problem and the hazards
 - System level, goals, hazard analysis, world vs machine
 - Specify end-to-end system behavior if feasible
- Recent research on adversarial learning and safety in reinforcement learning

OTHER AI SAFETY CONCERNS



NEGATIVE SIDE EFFECTS

- Al is optimized for a specific objective/cost function
 - Inadvertently cause undesirable effects on the environment
 - e.g., Transport robot: Move a box to a specific destination
 - Side effects: Scratch furniture, bump into humans, etc.,
- Side effects may cause ethical/safety issues (e.g., social media example from the Ethics lecture)
- Again, requirements problem!
 - Recall: "World vs. machine"
 - Identify stakeholders in the environment & possible effects on them
- Modify the AI goal from "Perform Task X" to:
 - Perform X subject to common-sense constraints on the environment
 - Perform X but avoid side effects to the extent possible

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. "Concrete problems in Al safety." arXiv preprint arXiv:1606.06565 (2016).

REWARD HACKING

PlayFun algorithm pauses the game of Tetris indefinitely to avoid losing

When about to lose a hockey game, the PlayFun algorithm exploits a bug to make one of the players on the opposing team disappear from the map, thus forcing a draw.

Self-driving car rewarded for speed learns to spin in circles

Example: Coast Runner

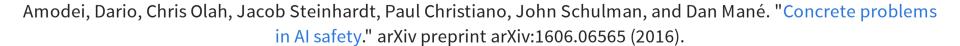
REWARD HACKING

- AI can be good at finding loopholes to achieve a goal in unintended ways
- Technically correct, but does not follow designer's informal intent
- Many possible causes, incl. partially observed goals, abstract rewards, feedback loops
- In general, a very challenging problem!
 - Difficult to specify goal & reward function to avoid all possible hacks
 - Requires careful engineering and iterative reward design

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. "Concrete problems in Al safety." arXiv preprint arXiv:1606.06565 (2016).

REWARD HACKING -- MANY EXAMPLES

Tweet



OTHER CHALLENGES

- Safe Exploration
 - Exploratory actions "in production" may have consequences
 - e.g., trap robots, crash drones
 - -> Safety envelopes and other strategies to explore only in safe bounds (see also chaos engineering)

OTHER CHALLENGES

- Safe Exploration
 - Exploratory actions "in production" may have consequences
 - e.g., trap robots, crash drones
 - -> Safety envelopes and other strategies to explore only in safe bounds (see also chaos engineering)
- Robustness to Drift
 - Drift may lead to poor performance that may not even be recognized
 - -> Check training vs production distribution (see data quality lecture),
 change detection, anomaly detection

OTHER CHALLENGES

- Safe Exploration
 - Exploratory actions "in production" may have consequences
 - e.g., trap robots, crash drones
 - -> Safety envelopes and other strategies to explore only in safe bounds (see also chaos engineering)
- Robustness to Drift
 - Drift may lead to poor performance that may not even be recognized
 - -> Check training vs production distribution (see data quality lecture),
 change detection, anomaly detection
- Scalable Oversight
 - Cannot provide human oversight over every action (or label all possible training data)
 - Use indirect proxies in telemetry to assess success/satisfaction
 - -> Semi-supervised learning? Distant supervision?

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. "Concrete problems in Al safety." arXiv preprint arXiv:1606.06565 (2016).

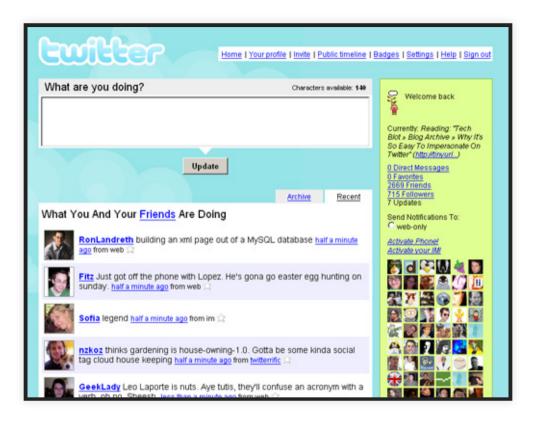
BEYOND TRADITIONAL SAFETY CRITICAL SYSTEMS

BEYOND TRADITIONAL SAFETY CRITICAL SYSTEMS

- Recall: Legal vs ethical
- Safety analysis not only for regulated domains (nuclear power plants, medical devices, planes, cars, ...)
- Many end-user applications have a safety component

Examples?

TWITTER



Speaker notes

What consequences should Twitter have foreseen? How should they intervene now that negative consequences of interaction patterns are becoming apparent?

MENTAL HEALTH

The FOMO Is Real: How Social Media Increases Depression and Loneliness

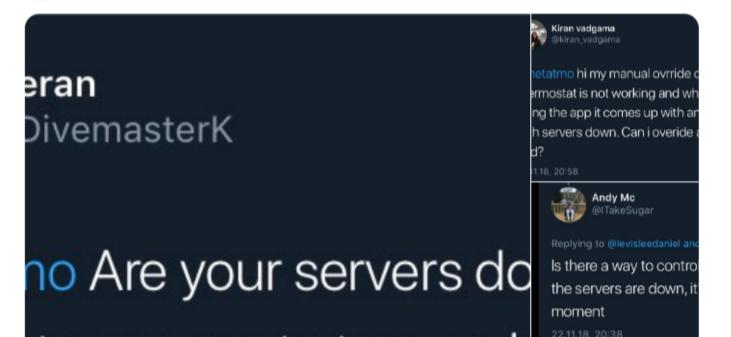
Written by Gigen Mammoser on December 10, 2018

New research reveals how social media platforms like Facebook can greatly affect your mental health.

IOT

Follow

The @netatmo servers are down and twitter is already full of freezing people not able to control their heating:D (via [protected]) / cc @internetofshit



to my app to turn on h

:02 from Wicklow, Ireland

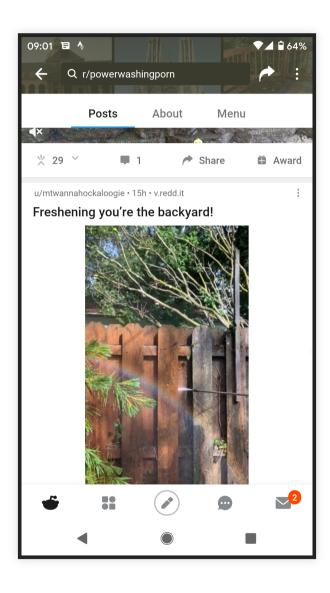
Brown @jamesbrun · ng to @tyrestighe @lev tmo

issue. Can't control hea t login to netatmo.com trol from there. What is tmo ?

3:15 PM - 22 Nov 2018

1,659 Retweets **2,280** Likes

ADDICTION



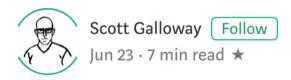
Infinite scroll in applications removes the natural breaking point at pagination where one might reflect and stop use.

ADDICTION

NO MERCY NO MALICE

Robinhood Has Gamified Online Trading Into an Addiction

Tech's obsession with addiction will hurt us all



Warning: This post contains a discussion of suicide.

A ddiction is the inability to stop consuming a chemical or pursuing an activity although it's causing harm.

I engage with almost every substance or behavior associated with addiction: alcohol, drugs, coffee, porn, sex, gambling, work, spending,

SOCIETY: UNEMPLOYMENT ENGINEERING / DESKILLING

Speaker notes

The dangers and risks of automating jobs.

Discuss issues around automated truck driving and the role of jobs.

See for example: Andrew Yang. The War on Normal People. 2019

SOCIETY: POLARIZATION

Speaker notes

Recommendations for further readings: https://www.nytimes.com/column/kara-swisher, https://podcasts.apple.com/us/podcast/recode-decode/id1011668648

Also isolation, Cambridge Analytica, collaboration with ICE, ...

ENVIRONMENTAL: ENERGY CONSUMPTION

NewScientist

SUBSCRIBE AND SAVE 69%

Creating an AI can be five times worse for the planet than a car

TECHNOLOGY 6 June 2019

By **Donna Lu**

EXERCISE

Look at apps on your phone. Which apps have a safety risk and use machine learning?

Consider safety broadly: including stress, mental health, discrimination, and environment pollution

TAKEAWAY

- Many systems have safety concerns
- ... not just nuclear power plants, planes, cars, and medical devices
- Do the right thing, even without regulation
- Consider safety broadly: including stress, mental health, discrimination, and environment pollution
- Start with requirements and hazard analysis

SUMMARY

- Adopt a safety mindset!
- Defining safety: absence of harm to people, property, and environment
 - Beyond traditional safety critical systems, affects many apps and web services
- Assume all components will eventually fail in one way or another, especially ML components
- Hazard analysis to identify safety risks and requirements; classic safety design at the system level
- AI goals are difficult to specify precisely; susceptible to negative side effect
 & reward hacking
- Model robustness can help with some problems